Guide to Operational Technology (OT) Security

1

2

3

5	
6	Initial Public Draft
7	
8	Keith Stouffer
9	Michael Pease
10	CheeYee Tang
11	Timothy Zimmerman
12	Victoria Pillitteri
13	Suzanne Lightman
14	
15	
16	
17	This publication is available free of charge from:
18	https://doi.org/10.6028/NIST.SP.800-82r3.ipd
19	
20	
21	
22	

I	23
NIST SP 800-82r3 ipc	24
Guide to Operational Technology (OT)	25
Security	26
•	27
	21
Initial Public Draf	28
	29
Keith Stouffe	30
Michael Pease	31
2. CheeYee Tang	32
Timothy Zimmerman	33
Smart Connected Systems Division	34
Communications Technology Laborator	35
	36
Victoria Pillitter	37
S Suzanne Lightman	38
1 2	39
) Information Technology Laborator	40
	41
	42
https://doi.org/10.6028/NIST.SP.800-82r3.ipe	43
	44
5 April 2022	45
	46

STATES OF ANY	STATES OF AN
U.S. Department of Commer Gina M. Raimondo, Secreta	
National Institute of Standards and Technolo Laurie E. Locascio, NIST Director and Undersecretary of Commerce for Standards and Technolo	01

Authority

56 This publication has been developed by NIST in accordance with its statutory responsibilities under the

57 Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 *et seq.*, Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including

59 minimum requirements for federal information systems, but such standards and guidelines shall not apply

60 to national security systems without the express approval of appropriate federal officials exercising policy

authority over such systems. This guideline is consistent with the requirements of the Office of Management

62 and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

69	National Institute of Standards and Technology Special Publication 800-82r3
70	Natl. Inst. Stand. Technol. Spec. Publ. 800-82r3, 317 pages (April 2022)
71	Initial Public Draft
72	CODEN: NSPUE2
73	This publication is available free of charge from:
74	https://doi.org/10.6028/NIST.SP.800-82r3.ipd
75	Cartain annuantial antitica anniannat an matarial ann ha ideatifiad in this deannant in ander to deani

75 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 76 experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 77 endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 78 available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
 NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
 <u>https://csrc.nist.gov/publications</u>.

88	Public comment period: April 26, 2022 – July 1, 2022
89	Submit comments on this publication to: sp800-82rev3@nist.gov
90 91 92	National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
93	All comments are subject to release under the Freedom of Information Act (FOIA).

Reports on Computer Systems Technology

95 The Information Technology Laboratory (ITL) at the National Institute of Standards and

96 Technology (NIST) promotes the U.S. economy and public welfare by providing technical

97 leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test

98 methods, reference data, proof of concept implementations, and technical analyses to advance

99 the development and productive use of information technology. ITL's responsibilities include the 100 development of management, administrative, technical, and physical standards and guidelines for

101 the cost-effective security and privacy of other than national security-related information in

federal information systems. The Special Publication 800-series reports on ITL's research,

103 guidelines, and outreach efforts in information system security, and its collaborative activities

104 with industry, government, and academic organizations.

105

Abstract

106 This document provides guidance on how to secure operational technology (OT), while

107 addressing their unique performance, reliability, and safety requirements. OT encompasses a

108 broad range of programmable systems and devices that interact with the physical environment

109 (or manage devices that interact with the physical environment). These systems and devices

110 detect or cause a direct change through monitoring and/or control of devices, processes, and

111 events. Examples include industrial control systems, building automation systems, transportation

112 systems, physical access control systems, physical environment monitoring systems, and

113 physical environment measurement systems. The document provides an overview of OT and

114 typical system topologies, identifies typical threats and vulnerabilities to these systems, and

115 provides recommended security countermeasures to mitigate the associated risks.

116

Keywords

117 Computer security; distributed control systems (DCS); industrial control systems (ICS);

118 information security; network security; operational technology (OT); programmable logic

119 controllers (PLC); risk management; security controls; supervisory control and data acquisition

120 (SCADA) systems

Acknowledgments for DRAFT Revision 3

123 The authors gratefully acknowledge and appreciate the significant contributions from Sallie 124 Edwards, Blaine Jefferies, Adam Hahn, John Hoyt, Stephanie Saravia, Aslam Sherule, and 125 Michael Thompson from The MITRE Corporation, and Megan Corso and Brett Ramsay from the 126 Department of Defense. The authors wish to thank their colleagues who reviewed drafts of the 127 document and contributed to its content, including Eran Salfati, Karen Scarfone and Isabel Van Wyk.

- 128
- 129

Acknowledgments for Previous Versions

130 The authors wish to thank their colleagues who reviewed drafts of the original version of the

document and contributed to its technical content. The authors would particularly like to 131

132 acknowledge Tim Grance, Ron Ross, Stu Katzke, and Freemon Johnson of NIST for their keen

133 and insightful assistance throughout the development of the document. The authors also

134 gratefully acknowledge and appreciate the many contributions from the public and private

135 sectors whose thoughtful and constructive comments improved the quality and usefulness of the

136 publication. The authors would particularly like to thank the members of ISA99. A special

137 acknowledgement to Lisa Kaiser, Department of Homeland Security, the Department of

138 Homeland Security Industrial Control System Joint Working Group (ICSJWG), and Office of the

139 Deputy Undersecretary of Defense for Installations and Environment, Business Enterprise

140 Integration Directorate staff, Daryl Haegley and Michael Chipley, for their exceptional

141 contributions to this publication. The authors would also like to thank the UK National Centre 142 for the Protection of National Infrastructure (CPNI) for allowing portions of the Good Practice

143 Guide on Firewall Deployment for SCADA and Process Control Network to be used in the

144 document as well as ISA for allowing portions of the ISA-62443 Standards to be used in the 145 document.

146

Note to Readers

- This document is the third revision to NIST SP 800-82. Updates in this revision include: 147
- 148 • Expansion in scope from industrial control systems to operational technology (OT).
- 149 Updates to OT threats and vulnerabilities.
- 150 Updates to OT risk management, recommended practices, and architectures.
- 151 ■ Updates to current activities in OT security.
- 152 ■ Updates to security capabilities and tools for OT.
- 153 ■ Additional alignment with other OT security standards and guidelines, including the 154 Cybersecurity Framework.
- 155 ■ New tailoring guidance for NIST SP 800-53 Revision 5 security controls
- 156 ■ An OT overlay for NIST SP 800-53 Revision 5 security controls that provides tailored 157 security control baselines for low-, moderate-, and high-impact OT systems.

159	Call for Patent Claims					
160 161 162 163 164 165	This public review includes a call for information on essential patent claims (claims whose use would be required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by reference to another publication. This call also includes disclosure, where known, of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.					
166 167	ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or electronic form, either:					
168 169	a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not currently intend holding any essential patent claim(s); or					
170 171 172	 b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft publication either: 					
173 174 175 176	 i. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or ii. without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination. 					
177 178 179 180 181	Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that the transferee will similarly include appropriate provisions in the event of future transfers with the goal of binding each successor-in-interest.					
182 183	The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether such provisions are included in the relevant transfer documents.					

184 Such statements should be addressed to: <u>sp800-82rev3@nist.gov</u>

186			Table of Contents	
187	Exe	ecutiv	e Summary	xv
188	1	Intro	duction	1
189		1.1	Purpose and Scope	1
190		1.2	Audience	1
191		1.3	Document Structure	2
192	2	от с)verview	3
193		2.1	Evolution of OT	3
194		2.2	OT-Based Systems and Their Interdependencies	4
195		2.3	OT System Operation, Architectures, and Components	5
196			2.3.1 OT System Design Considerations	6
197			2.3.2 SCADA Systems	7
198			2.3.3 Distributed Control Systems	14
199			2.3.4 Programmable Logic Controller-Based Topologies	16
200			2.3.5 Building Automation Systems	17
201			2.3.6 Physical Access Control Systems	20
202			2.3.7 Safety Systems	21
203			2.3.8 Industrial Internet of Things	22
204		2.4	Comparing OT and IT System Security	24
205	3	от с	Sybersecurity Program Development	29
206		3.1	Establish a Charter for OT Cybersecurity Program	29
207		3.2	Business Case for OT Cybersecurity Program	30
208			3.2.1 Benefits of Cybersecurity investments	30
209			3.2.2 Building an OT Cybersecurity Business Case	32
210			3.2.3 Resources for Building Business Case	32
211			3.2.4 Presenting the OT Cybersecurity Business Case to Leadership	33
212		3.3	OT Cybersecurity Program Content	34
213			3.3.1 Establish OT Cybersecurity Governance	35
214 215			3.3.2 Build and Train a Cross-Functional Team to Implement OT Cybersecurity Program	35
216			3.3.3 Define OT Cybersecurity Strategy	36
217			3.3.4 Define OT-Specific Policies and Procedures	37

218 219				Establish Cybersecurity Awareness Training Program for OT ization	38
220			3.3.6	Implement a Risk Management Framework for OT	38
221			3.3.7	Develop Maintenance Tracking Capability	38
222			3.3.8	Develop Incident Response Capability	39
223			3.3.9	Develop Recovery and Restoration Capability	39
224			3.3.10	Summary of OT Cybersecurity Program Content	40
225	4	Risk	Manag	gement for OT Systems	41
226		4.1	Manag	ging OT Security Risk	42
227			4.1.1	Framing OT Risk	43
228			4.1.2	Assessing Risk in the OT Environment	48
229			4.1.3	Responding to Risk in an OT Environment	50
230			4.1.4	Monitoring Risk in an OT Environment	50
231		4.2	Specia	al Areas for Consideration	51
232			4.2.1	Supply Chain Risk Management	51
233			4.2.2	Safety Systems	52
234		4.3	Applyi	ng the Risk Management Framework for OT Systems	53
235			4.3.1	Prepare	53
236			4.3.2	Categorize	56
237			4.3.3	Select	57
238			4.3.4	Implement	59
239			4.3.5	Assess	60
240			4.3.6	Authorize	61
241			4.3.7	Monitor	62
242	5	от с	yberse	ecurity Architecture	63
243		5.1	Cyber	security Strategy	63
244			5.1.1	Impacts of Choosing a Cybersecurity Strategy	64
245			5.1.2	Defense-in-Depth Strategy	64
246			5.1.3	Other Cybersecurity Strategy Considerations	65
247		5.2	Defen	se-in-Depth Architecture Capabilities	66
248			5.2.1	Layer 1 - Security Management	66
249			5.2.2	Layer 2 - Physical Security	66

250			5.2.3	Layer 3 - Network Security	67
251			5.2.4	Layer 4 - Hardware Security	72
252			5.2.5	Layer 5 - Software Security	73
253		5.3	Additi	onal Cybersecurity Architecture Considerations	75
254			5.3.1	Cyber-Related Safety Considerations	75
255			5.3.2	Availability Considerations	76
256			5.3.3	Geographically Distributed Systems	77
257			5.3.4	Regulatory Requirements	77
258			5.3.5	Environmental Considerations	77
259			5.3.6	Field I/O (Purdue Level 0) Security Considerations	77
260			5.3.7	Additional Security Considerations for IIoT	78
261		5.4	Cyber	rsecurity Architecture Models	79
262			5.4.1	Distributed Control System (DCS)-Based OT Systems	79
263			5.4.2	DCS/PLC-Based OT with IIoT	82
264			5.4.3	SCADA-Based OT Environments	83
265	6	App	lying tl	he Cybersecurity Framework to OT	
266		6.1	Identi	fy (ID)	
267			6.1.1	Asset Management (ID.AM)	
268			6.1.2	Governance (ID.GV)	
269			6.1.3	Risk Assessment (ID.RA)	
270			6.1.4	Risk Management Strategy (ID.RM)	91
271			6.1.5	Supply Chain Risk Management (ID.SC)	92
272		6.2	Prote	ct (PR)	
273			6.2.1	Identity Management and Access Control (PR.AC)	
274			6.2.2	Awareness and Training (PR.AT)	104
275			6.2.3	Data Security (PR.DS)	104
276			6.2.4	Information Protection Processes and Procedures (PR.IP)	106
277			6.2.5	Maintenance (PR.MA)	112
278			6.2.6	Protective Technology (PR.PT)	113
279			6.2.7	Media Protection (PR.PT-2)	114
280			6.2.8	Personnel Security	115
281			629	Wireless Communications	116

282		6.2.10 Remote Access	117
283		6.2.11 Flaw Remediation and Patch Management	119
284		6.2.12 Time Synchronization	121
285	6.3	Detect (DE)	122
286		6.3.1 Anomalies and Events (DE.AE)	122
287		6.3.2 Security Continuous Monitoring (DE.CM)	124
288		6.3.3 Detection Process (DE.DP)	129
289	6.4	Respond (RS)	129
290		6.4.1 Response Planning (RS.RP)	129
291		6.4.2 Response Communications (RS.CO)	130
292		6.4.3 Response Analysis (RS.AN)	131
293		6.4.4 Response Mitigation (RS.MI)	132
294		6.4.5 Response Improvements (RS.IM)	132
295	6.5	Recover (RC)	132
296		6.5.1 Recovery Planning (RC.RP)	132
297		6.5.2 Recovery Improvements (RC.IM)	133
298		6.5.3 Recovery Communications (RC.CO)	133
299	Reference	ces	135
300			
301 302		List of Appendices	
303	••	x A— Acronyms	
304	••	x B— Glossary	152
305		x C— Threat Sources, Vulnerabilities, and Incidents	
306		Threat Sources	
307	C.2	Vulnerabilities and Predisposing Conditions	
308		C.2.1 Policy and Procedure Vulnerabilities and Predisposing Condition	
309		C.2.2 System Vulnerabilities and Predisposing Conditions	
310	C.3	Threat Events and Incidents	
311		C.3.1 Adversarial Events	
312		C.3.2 Structural Events	
313		C.3.3 Environmental Events	178

314		C.3.4	Accidental Events 178
315	Appendix	x D— (OT Security Organizations, Research, and Activities
316	D.1	Conso	ortiums and Standards 180
317		D.1.1	Critical Infrastructure Partnership Advisory Council (CIPAC)
318		D.1.2	Institute for Information Infrastructure Protection (I3P)
319		D.1.3	International Electrotechnical Commission (IEC) 180
320		D.1.4	Institute of Electrical and Electronics Engineers, Inc. (IEEE)
321		D.1.5	International Society of Automation (ISA)
322		D.1.6	International Organization for Standardization (ISO)
323 324		D.1.7	National Council of Information Sharing and Analysis Centers (ISACs) 185
325		D.1.8	National Institute of Standards and Technology (NIST) 186
326		D.1.9	North American Electric Reliability Corporation (NERC) 189
327	D.2	Resea	arch Initiatives and Programs 190
328		D.2.1	Clean Energy Cybersecurity Accelerator Initiative
329		D.2.2	Cybersecurity for Energy Delivery Systems (CEDS) R&D Program. 190
330 331		D.2.3	Cybersecurity for the Operational Technology Environment (CyOTE) 190
332		D.2.4	Cybersecurity Risk Information Sharing Program (CRISP) 191
333		D.2.5	Cyber Testing for Resilient Industrial Control Systems (CyTRICS) 191
334 335		D.2.6 CI)	Homeland Security Information Network - Critical Infrastructure (HSIN- 191
336 337		D.2.7 (CCE)	INL Cyber-Informed Engineering (CIE) / Consequence-Driven CIE 191
338 339		D.2.8	LOGIIC - Linking the Oil and Gas Industry to Improve Cybersecurity 192
340		D.2.9	NIST Cyber Physical Systems and Internet of Things Program 192
341		D.2.10	NIST Cybersecurity for Smart Grid Systems Project
342		D.2.11	NIST Cybersecurity for Smart Manufacturing Systems Project 193
343 344			2NIST Reliable, High Performance Wireless Systems for Factory nation
345 346			NIST Prognostics and Health Management for Reliable Operations in Manufacturing (PHM4SM)193
347		D.2.14	INIST Supply Chain Traceability for Agri-Food Manufacturing

348	D.3	Tools and Training	194
349		D.3.1 CISA Cyber Security Evaluation Tool (CSET®)	
350		D.3.2 CISA Cybersecurity Framework Guidance	
351		D.3.3 CISA ICS Alerts, Advisories and Reports	
352		D.3.4 CISA ICS Training Courses	195
353		D.3.5 MITRE ATT&CK for ICS	195
354		D.3.6 NIST Cybersecurity Framework	195
355		D.3.7 SANS ICS Security Courses	195
356	D.4	Sector-Specific Resources	196
357		D.4.1 Chemical	196
358		D.4.2 Communications	196
359		D.4.3 Critical Manufacturing	196
360		D.4.4 Dams	197
361		D.4.5 Energy	197
362		D.4.6 Food and Agriculture	197
363		D.4.7 Healthcare and Public Health	197
364		D.4.8 Nuclear Reactors, Materials, and Waste	
365		D.4.9 Transportation Systems	
366		D.4.10Water and Wastewater	
367	D.5	Conferences and Working Groups	199
368		D.5.1 Digital Bond's SCADA Security Scientific Symposium (S4)	
369		D.5.2 Industrial Control Systems Joint Working Group (ICSJWG)	
370		D.5.3 IFIP Working Group 11.10 on Critical Infrastructure Protection	า 199
371		D.5.4 SecurityWeek's ICS Cyber Security Conference	
372		D.5.5 Stockholm International Summit on Cyber Security in SCADA	
373		(CS3STHLM)	
374		x E— OT Security Capabilities and Tools	
375	E.1	Network Segmentation and Isolation	
376		E.1.1 Firewalls	
377		E.1.2 Unidirectional Gateways	
378		E.1.3 Virtual Local Area Networks (VLAN)	
379		E.1.4 Software-Defined Networking (SDN)	

380	E.2	Network Monitoring/Security Information and Event Management (SIEM).	202
381		E.2.1 Centralized Logging	202
382		E.2.2 Passive Scanning	202
383		E.2.3 Active Scanning	203
384		E.2.4 Malware Detection	203
385		E.2.5 Behavioral Anomaly Detection	203
386		E.2.6 Data Loss Prevention (DLP)	204
387		E.2.7 Deception Technology	204
388		E.2.8 Digital Twins	204
389	E.3	Data Security	204
390		E.3.1 Backup Storage	204
391		E.3.2 Immutable Storage	205
392		E.3.3 File Hashing	205
393		E.3.4 Digital Signatures	205
394		E.3.5 Block Ciphers	205
395		E.3.6 Remote Access	205
0,0			
396	Appendi	x F— OT Overlay	207
	Appendiz F.1	x F— OT Overlay Overlay Characteristics	
396		-	207
396 397	F.1	Overlay Characteristics	207 208
396 397 398	F.1 F.2	Overlay Characteristics	207 208 208
396 397 398 399	F.1 F.2 F.3	Overlay Characteristics Applicability Overlay Summary	207 208 208 218
396 397 398 399 400	F.1 F.2 F.3 F.4 F.5	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations	207 208 208 218 219
 396 397 398 399 400 401 	F.1 F.2 F.3 F.4 F.5	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions	207 208 208 218 219 219
 396 397 398 399 400 401 402 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions	207 208 208 218 219 219 219
 396 397 398 399 400 401 402 403 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions Detailed Overlay Control Specifications	207 208 218 219 219 219 219 221
 396 397 398 399 400 401 402 403 404 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions Definitions F.7.1 ACCESS CONTROL – AC	207 208 218 219 219 219 221 221 230
 396 397 398 399 400 401 402 403 404 405 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics. Applicability. Overlay Summary. Tailoring Considerations. OT Communication Protocols. Definitions. Detailed Overlay Control Specifications. F.7.1 ACCESS CONTROL – AC. F.7.2 AWARENESS AND TRAINING – AT.	207 208 218 219 219 219 221 230 231
 396 397 398 399 400 401 402 403 404 405 406 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions Detailed Overlay Control Specifications. F.7.1 ACCESS CONTROL – AC F.7.2 AWARENESS AND TRAINING – AT F.7.3 AUDITING AND ACCOUNTABILITY – AU.	207 208 218 219 219 219 221 230 231 235
 396 397 398 399 400 401 402 403 404 405 406 407 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions Definitions F.7.1 ACCESS CONTROL – AC F.7.2 AWARENESS AND TRAINING – AT F.7.3 AUDITING AND ACCOUNTABILITY – AU F.7.4 ASSESSMENT, AUTHORIZATION, AND MONITORING – CA	207 208 218 219 219 219 221 230 231 235 238
 396 397 398 399 400 401 402 403 404 405 406 407 408 	F.1 F.2 F.3 F.4 F.5 F.6	Overlay Characteristics Applicability Overlay Summary Tailoring Considerations OT Communication Protocols Definitions Definitions Detailed Overlay Control Specifications F.7.1 ACCESS CONTROL – AC F.7.2 AWARENESS AND TRAINING – AT F.7.3 AUDITING AND ACCOUNTABILITY – AU F.7.4 ASSESSMENT, AUTHORIZATION, AND MONITORING – CA F.7.5 CONFIGURATION MANAGEMENT – CM	207 208 218 219 219 219 221 230 231 235 238 242

412	F.7.9 MAINTENANCE - MA	254
413	F.7.10 MEDIA PROTECTION –MP	256
414	F.7.11 PHYSICAL AND ENVIRONMENTAL PROTECTION – PE	257
415	F.7.12 PLANNING – PL	263
416 417	F.7.13 ORGANIZATION-WIDE INFORMATION SECURITY PROGRAM MANAGEMENT CONTROLS - PM	265
418	F.7.14 PERSONNEL SECURITY – PS	272
419	F.7.15 RISK ASSESSMENT – RA	274
420	F.7.16 SYSTEM AND SERVICES ACQUISITION – SA	276
421	F.7.17 SYSTEM AND COMMUNICATIONS PROTECTION - SC	280
422	F.7.18 SYSTEM AND INFORMATION INTEGRITY - SI	288
423	F.7.19 SUPPLY CHAIN RISK MANAGEMENT - SR	294
424		
425	List of Figures	
426	Figure 1: Basic operation of a typical OT system	6
427 428	Figure 2: A general SCADA system layout showing control center devices, communications equipment, and field sites	9
429 430	Figure 3: Examples of point-to-point, series, series-star, and multi-drop SCADA communications topologies	10
431	Figure 4: Example SCADA topology to support a large number of remote stations	. 11
432	Figure 5: A comprehensive SCADA system implementation example	. 12
433	Figure 6: An example rail monitoring and control SCADA system implementation	. 13
434	Figure 7: A comprehensive DCS implementation example	. 15
435	Figure 8: A PLC control system implementation example	. 17
436	Figure 9: A comprehensive Building Automation System implementation example	. 19
437	Figure 10: A Physical Access Control System implementation example	. 20
438	Figure 11: A Safety Instrumented System implementation example	. 22
439	Figure 12: A three-tiered Industrial Internet of Things system architecture	. 23
440	Figure 13: Risk Management Process: Frame, Assess, Respond, Monitor	. 42
441 442	Figure 14: Risk Management Levels: Organization, Mission/Business Process, and System	43
443	Figure 15: Risk Management Framework Steps	. 53

444 445	Figure 16: High-level example of Purdue Model and IIoT Model for network segmentation with DMZ segments	68
446	Figure 17: DCS implementation example	80
447	Figure 18: Defense-in-depth security architecture example for DCS system	81
448	Figure 19: Security architecture example for DCS system with IIoT devices	83
449	Figure 20: An example SCADA system in an OT environment	84
450	Figure 21: Security architecture example for SCADA system	85
451	Figure 22: Detailed Overlay Control Specifications Illustrated	221
452		
453	List of Tables	
454	Table 1: Summary of typical differences between IT and OT systems	
455	Table 2: Sections with additional guidance on establishing a cybersecurity progra	am 40
456 457	Table 3: Possible Definitions for OT Impact Levels Based on Product Produced, Industry, and Security Concerns	
458	Table 4: Event Likelihood Evaluation	
459	Table 5: Categories of Non-Digital OT Control Components	49
460	Table 6: Applying the RMF Prepare step to OT	54
461	Table 7: Applying the RMF Categorize step to OT	57
462	Table 8: Applying the RMF Select step to OT	58
463	Table 9: Applying the RMF Implement step to OT	60
464	Table 10: Applying the RMF Assess step to OT	60
465	Table 11: Applying the RMF Authorize step to OT	61
466	Table 12: Applying the RMF Monitor step to OT	62
467	Table 13: Threats to OT	163
468	Table 14: Policy and Procedure Vulnerabilities and Predisposing Conditions	166
469	Table 15: Architecture and Design Vulnerabilities and Predisposing Conditions	168
470 471	Table 16: Configuration and Maintenance Vulnerabilities and Predisposing Cond	
472	Table 17: Physical Vulnerabilities and Predisposing Conditions	171
473	Table 18: Software Development Vulnerabilities and Predisposing Conditions	171
474 475	Table 19: Communication and Network Configuration Vulnerabilities and Predisp Conditions	•

	Table 20: Sensor, Final Element, and Asset Management Vulnerabilities and Predisposing Conditions	172
478	Table 21: Examples of Potential Threat Events	173
479	Table 22: Control Baselines	209
480		

482 **Executive Summary**

This document provides guidance for establishing secure operational technology (OT)¹ while addressing OT's unique performance, reliability, and safety requirements. OT encompasses a broad range of programmable systems and devices that interact with the physical environment (or manage devices that interact with the physical environment). These systems and devices detect or cause a direct change through monitoring and/or control of devices, processes, and events. Examples include industrial control systems (ICS), building automation systems, transportation systems, physical access control systems, physical environment monitoring

- 489 transportation systems, physical access control systems, physical environment monitoring 490 systems, and physical environment measurement systems. The document provides an overview
- 490 systems, and physical environment measurement systems. The document provides an overvie 491 of OT and typical system topologies, identifies typical threats and vulnerabilities for these
- 492 systems, and recommends security countermeasures to mitigate the associated risks.
- 493 OT is critical to the operation of U.S. critical infrastructures, which are often highly
- 494 interconnected, mutually dependent systems. It is important to note that while federal agencies
- 495 operate many of the nation's critical infrastructures, many others are privately owned and
- 496 operated. Additionally, critical infrastructures are often referred to as a "system of systems"
- 497 because of the interdependencies that exist between various industrial sectors as well as
- 498 interconnections between business partners.
- 499 Initially, OT had little resemblance to traditional information technology (IT) systems in that OT
- 500 systems were isolated, ran proprietary control protocols, and used specialized hardware and
- 501 software. As OT are adopting IT solutions to promote corporate business systems connectivity
- and remote access capabilities, and being designed and implemented using industry-standard
- 503 computers, operating systems (OSs), and network protocols, they are starting to resemble IT
- 504 systems. This integration supports new IT capabilities, but it provides significantly less isolation
- 505 for OT from the outside world than predecessor systems, creating a greater need to secure OT
- 506 systems. The increasing use of wireless networking places OT implementations at greater risk 507 from adversaries who are in relatively close physical proximity but do not have direct physical
- 507 from adversaries who are in relatively close physical proximity but do not have direct physical 508 access to the equipment. While security solutions have been designed to deal with these issues in
- 509 typical IT systems, special precautions must be taken when introducing these same solutions to
- 509 typical IT systems, special precautions must be taken when introducing these same solutions to 510 OT environments. In some cases, new security solutions are needed that are tailored to the OT
- 511 environment.
- 512 Although some characteristics are similar, OT also have characteristics that differ from
- 513 traditional information processing systems. Many of these differences stem from the fact that
- 514 logic executing in OT has a direct effect on the physical world. Some of these characteristics
- 515 include significant risk to the health and safety of human lives and serious damage to the
- 516 environment, as well as serious financial issues such as production losses, negative impact to a
- 517 nation's economy, and compromise of proprietary information. OT have unique performance and
- 518 reliability requirements and often use OSs and applications that may be considered
- 519 unconventional to typical IT personnel. Furthermore, the goals of safety and efficiency
- 520 sometimes conflict with security in the design and operation of OT systems.

https://csrc.nist.gov/Projects/operational-technology-security

- 521 OT cybersecurity programs should always be part of broader OT safety and reliability programs
- 522 at both industrial sites and enterprise cybersecurity programs, because cybersecurity is essential
- 523 to the safe and reliable operation of modern industrial processes. Threats to OT systems can
- 524 come from numerous sources, including hostile governments, terrorist groups, disgruntled
- 525 employees, malicious intruders, complexities, accidents, and natural disasters as well as
- 526 malicious actions by insiders. OT security objectives typically follow the priority of integrity and
- 527 availability, followed by confidentiality.
- 528 Possible incidents an OT system may face include the following:
- Blocked or delayed flow of information through OT networks, which could disrupt OT operation.
- Unauthorized changes to instructions, commands, or alarm thresholds, which could damage,
 disable, or shut down equipment, create environmental impacts, and/or endanger human life.
- Inaccurate information sent to system operators, either to disguise unauthorized changes or to cause operators to initiate inappropriate actions, which could have various negative effects.
- Modified OT software or configuration settings, or OT software infected with malware,
 which could have various negative effects.
- Interference with the operation of equipment protection systems, which could endanger
 costly and difficult-to-replace equipment.
- 539 Interference with the operation of safety systems, which could endanger human life.
- 540 Major security objectives for an OT implementation should include the following:
- Restrict logical access to the OT network, network activity, and systems. This may
 include using unidirectional gateways, utilizing a demilitarized zone (DMZ) network
 architecture with firewalls to prevent network traffic from passing directly between the
 corporate and OT networks, and having separate authentication mechanisms and credentials
 for users of the corporate and OT networks. The OT system should also use a network
 topology that has multiple layers, with the most critical communications occurring in the
 most secure and reliable layer.
- Restrict physical access to the OT network and devices. Unauthorized physical access to components could cause serious disruption of the OT's functionality. A combination of physical access controls should be used, such as locks, card readers, and/or guards.
- 551 Protect individual OT components from exploitation. This includes deploying security 552 patches in as expeditious a manner as possible after testing them under field conditions; 553 disabling all unused ports and services and assuring that they remain disabled; restricting OT 554 user privileges to only those that are required for each user's role; tracking and monitoring 555 audit trails; and using security controls such as antivirus software and file integrity checking 556 software where technically feasible to prevent, deter, detect, and mitigate malware. Keys of 557 OT assets like programmable logic controllers (PLCs) and safety systems should be in the 558 "Run" position at all times unless they are being actively programmed.

- Restrict unauthorized modification of data. This includes data that is in transit (at least across network boundaries) and at rest.
- Detect security events and incidents. Detecting security events, which have not yet
 escalated into incidents, can help defenders break the attack chain before attackers attain their
 objectives. This includes the capability to detect failed OT components, unavailable services,
 and exhausted resources that are important to provide proper and safe functioning of the OT
 system.
- Maintain functionality during adverse conditions. This involves designing the OT system so that each critical component has a redundant counterpart. Additionally, if a component fails, it should fail in a manner that does not generate unnecessary traffic on the OT or other networks, nor causes another problem elsewhere, such as a cascading event. The OT system should also allow for graceful degradation such as moving from "normal operation" with full automation to "emergency operation" with operators more involved and less automation to "manual operation" with no automation.
- 573 Restore the system after an incident. Incidents are inevitable and an incident response plan
 574 is essential. A major characteristic of a good security program is how quickly the system can
 575 be recovered after an incident has occurred.
- 576 To properly address security in an OT system, it is essential for a cross-functional cybersecurity
- 577 team to share their varied domain knowledge and experience to evaluate and mitigate risk to the
- 578 OT system. The cybersecurity team should consist of a member of the organization's IT staff,
- 579 control engineer, control system operator, network and system security expert, a member of the
- 580 management staff, and a member of the physical security department at a minimum. For
- 581 continuity and completeness, the cybersecurity team should consult with the control system
- 582 vendor and/or system integrator as well. The cybersecurity team should coordinate closely with
- 583 site management (e.g., facility superintendent) and the company's Chief Information Officer
- 584 (CIO) or Chief Security Officer (CSO), who in turn, along with the Chief Executive Officer
- 585 (CEO) or Chief Operating Officer (COO), accepts complete responsibility and accountability for 586 the cybersecurity of the OT system and for any safety incidents, reliability incidents, or
- the cybersecurity of the OT system and for any safety incidents, renability incidents, or
 equipment damage caused directly or indirectly by cyber incidents. An effective cybersecurity
- 588 program for an OT system should apply a strategy known as "defense-in-depth," layering
- security mechanisms such that the impact of a failure in any one mechanism is minimized.
- 590 Organizations should not rely on "security by obscurity."

In a typical OT system this means a defense-in-depth strategy that includes:

- Developing security policies, procedures, training and educational material that apply specifically to the OT system.
- Considering OT security policies and procedures based on the <u>National Terrorism Advisory</u> <u>System</u>, deploying increasingly heightened security postures as the Threat Level increases.
- Addressing security throughout the life cycle of the OT system, including architecture design, procurement, installation, maintenance, and decommissioning.

- Implementing a network topology for the OT system that has multiple layers, with the most critical communications occurring in the most secure and reliable layer.
- Providing logical separation between the corporate and OT networks (e.g., stateful inspection firewall(s) between the networks, unidirectional gateways).
- Employing a DMZ network architecture (e.g., prevent direct traffic between the corporate and OT networks).
- Ensuring that critical components are redundant and are on redundant networks.
- Designing critical systems for graceful degradation (fault tolerant) to prevent catastrophic cascading events.
- Disabling unused ports and services on OT devices after assuring through testing that it will not impact OT operation.
- Restricting physical access to the OT network and devices.
- Restricting OT user privileges to only those that are required to perform each user's function (e.g., establishing role-based access control, configuring each role based on the principle of least privilege).
- Using separate authentication mechanisms and credentials for users of the OT network and the corporate network (i.e., OT network accounts do not use corporate network user accounts).
- Using modern technology, such as smart cards for user authentication
- Implementing security controls such as intrusion detection software, antivirus software and file integrity checking software, where technically feasible, to prevent, deter, detect, and mitigate the introduction, exposure, and propagation of malicious software to, within, and from the OT system.
- Applying security techniques such as encryption and/or cryptographic hashes to OT data storage and communications where determined appropriate.
- Expeditiously deploying security patches after testing all patches under field conditions on a test system if possible, before installation on the OT system.
- Tracking and monitoring audit trails on critical areas of the OT system.
- Employing reliable and secure network protocols and services where feasible.
- 591 NIST, in cooperation with the public and private sector OT community, has developed specific
- 592 guidance on the application of the security controls in NIST Special Publication (SP) 800-53
- 593 Revision 5, Security and Privacy Controls for Information Systems and Organizations [SP800-
- 594 53r5], to OT. This guidance is included in Appendix F of this document.

- 595 While many of the controls in Appendix F of SP 800-53 Rev. 5 are applicable to OT as written, 596 some controls require OT-specific interpretation and/or augmentation by adding one or more of 597 the following to the control:
- OT Discussion provides organizations with additional information on the application of the security controls and control enhancements in Appendix F to OT and the environments in which these specialized systems operate. The guidance also provides information as to why a particular security control or control enhancement may not be applicable in some OT environments or may be a candidate for tailoring (i.e., the application of scoping guidance and/or compensating controls). OT Discussion does not replace the original Supplemental Guidance in Appendix F.
- 605 Control Enhancements (one or more) provide augmentations to the original control that may be required for some OT systems.

The most successful method for securing OT systems is to gather industry recommended practices and engage in a proactive, collaborative effort between management, the OT engineers and operators, the IT organization, and a trusted OT advisor. This team should draw upon the wealth of information available from ongoing federal government, industry groups, and vendor and standards activities listed in Appendix D.

608 **1** Introduction

609 **1.1 Purpose and Scope**

- 610 The purpose of this document is to provide guidance for establishing secure operational
- 611 technology $(OT)^2$ while addressing OT's unique performance, reliability, and safety
- 612 requirements. The document gives an overview of OT systems and typical system topologies,
- 613 identifies typical threats and vulnerabilities for these systems, and recommends security
- 614 countermeasures to mitigate the associated risks. Additionally, it presents an OT-tailored security
- 615 control overlay based on NIST Special Publication (SP) 800-53 Rev. 5 [SP800-53r5] that
- 616 customizes controls for the unique characteristics of the OT domain. The body of the document
- 617 provides context for the overlay, but the overlay is intended to stand alone.
- 618 Because there are many types of OT with varying levels of potential risk and impact, this
- 619 document provides a list of many methods and techniques for securing OT systems. The
- 620 document should not be used purely as a checklist to secure a specific system. Readers are
- 621 encouraged to perform a risk-based assessment on their systems and to tailor the recommended
- 622 guidelines and solutions to meet their specific security, business and operational requirements.
- 623 The range of applicability of the basic concepts for securing OT systems presented in this
- 624 document continues to expand.

625 **1.2 Audience**

- 626 This document covers details specific to OT systems. Readers of this document should be
- 627 acquainted with general computer security concepts and with communication protocols such as
- those used in networking. The document is technical in nature; however, it provides the
- 629 necessary background to understand the topics that are discussed.
- 630 The intended audience is varied and includes the following:
- 631 Control engineers, integrators, and architects who design or implement OT systems
- 632 System administrators, engineers, and other information technology (IT) professionals who
 administer, patch, or secure OT systems
- 634 Security consultants who perform security assessments and penetration testing of OT systems
- 635 Managers who are responsible for OT systems
- 636 Senior management who need to better understand risk for OT systems as they justify and
 637 apply an OT cybersecurity program
- 638 Researchers and analysts who are trying to understand the unique security needs of OT systems

² The acronym "OT" can stand for either "operational technology" or "operational technologies." The context around the acronym, especially the use of singular or plural words, will indicate which meaning is intended.

640	 Vendors that are developing products that will be deployed as part of an OT system
641	1.3 Document Structure
642	The remainder of this document is divided into the following major sections:
643	 Section 2 gives an overview of OT, including a comparison between OT and IT systems.
644 645	 Section 3 discusses the development and deployment of an OT cybersecurity program to mitigate risk for the vulnerabilities identified in Appendix C.
646 647	 Section 4 examines OT security risk management and applying the Risk Management Framework to OT systems.
648 649 650	Section 5 provides recommendations for integrating security into network architectures typically found in OT systems, with an emphasis on network segmentation and separation practices.
651	■ Section 6 offers guidance on applying the Cybersecurity Framework to OT systems.
652 653	The References section provides a list of references used in the development of this document.
654	The guide also contains several appendices with supporting material, as follows:
655	 Appendix A lists acronyms and abbreviations used in this document.
656	 Appendix B contains a glossary of terms used in this document.
657 658	 Appendix C discusses OT threat sources, vulnerabilities and predisposing conditions, threat events, and incidents.
659 660	 Appendix D presents lists and descriptions of OT security organizations, research, and activities.
661	■ Appendix E discusses various OT security capabilities and tools.

Appendix F defines an SP 800-53, Revision 5 OT overlay, listing security controls, enhancements, and supplemental guidance that apply specifically to OT systems.

665 2 OT Overview

666 *Operational technology* (OT)³ encompasses a broad range of programmable systems and devices 667 that interact with the physical environment (or manage devices that interact with the physical 668 environment). These systems and devices detect or cause a direct change through monitoring 669 and/or control of devices, processes, and events. Examples include industrial control systems, 670 building automation systems, transportation systems, physical access control systems, physical

- 671 environment monitoring systems, and physical environment measurement systems.
- 672 OT systems consist of combinations of control components (e.g., electrical, mechanical,
- hydraulic, pneumatic) that act together to achieve an objective (e.g., manufacturing,
- 674 transportation of matter or energy). The part of the system primarily concerned with producing
- an output is referred to as the *process*. The part of the system primarily concerned with
- 676 maintaining conformance with specifications is referred to as the *controller* (or *control*). The
- 677 control components of the system include the specification of the desired output or performance.
- The system can be configured in one of three ways:
- 679 *open-loop*: the output is controlled by established settings
- *closed-loop*: the output has an effect on the input in such a way as to maintain the desired
 control objective
- 682 *manual mode*: the system is controlled completely by humans
- 683 This section provides an overview of several types of common OT systems, including
- 684 supervisory control and data acquisition (SCADA), distributed control systems (DCS),
- 685 programmable logic controllers (PLCs), building automation systems (BAS), physical access
- 686 control systems (PACS), and the Industrial Internet of Things (IIoT). Diagrams depict the typical
- network topology, connections, components, and protocols typically used for each system type.
- These examples only attempt to identify notional topology concepts. Actual implementations of
- these types of control systems may be hybrids that blur the lines between them. Note that the
- 690 diagrams in this section do not focus on securing OT. Security architecture and security controls
- are discussed in Section 5 and Appendix F of this document, respectively.

692 2.1 Evolution of OT

- 693 Much of today's OT evolved from the insertion of IT capabilities into existing physical systems,
- 694 often replacing or supplementing physical control mechanisms. For example, embedded digital
- 695 controls replaced analog mechanical controls in rotating machines and engines. Improvements in
- 696 cost and performance have encouraged this evolution, resulting in many of today's "smart"
- 697 technologies such as the smart electric grid, smart transportation, smart buildings, smart
- 698 manufacturing, and the Internet of Things. While this increases the connectivity and criticality of
- these systems, it also creates a greater need for their adaptability, resilience, safety, and security.
- Engineering of OT continues to evolve to provide new capabilities while maintaining the typical
 long life cycles of these systems. The introduction of IT capabilities into physical systems

³ <u>https://csrc.nist.gov/Projects/operational-technology-security</u>

- 702 presents emergent behavior that has security implications. Engineering models and analysis are
- 703 evolving to address these emergent properties, including safety, security, privacy, and
- 704 environmental impact interdependencies.

705 **2.2 OT-Based Systems and Their Interdependencies**

- 706 OT is used in many industries and critical infrastructures, including those identified by the
- 707 Cybersecurity and Infrastructure Security Agency (CISA) as <u>critical infrastructure sectors</u> listed
 708 below. Critical infrastructures that typically contain OT are bolded.
- 709 Chemical Sector
- 710 **Commercial Facilities Sector**
- 711 Communications Sector
- 712 Critical Manufacturing Sector
- 713 **Dams Sector**
- 714 **Defense Industrial Base Sector**
- 715 **Emergency Services Sector**
- 716 **Energy Sector**
- 717 Financial Services Sector
- 718 **Food and Agriculture Sector**
- 719 **Government Facilities Sector**
- 720 **Healthcare and Public Health Sector**
- 721 Information Technology Sector
- 722 **■** Nuclear Reactors, Materials, and Waste Sector
- 723 **Transportation Systems Sector**
- 724 Water and Wastewater Systems Sector

725 OT is critical to the operation of the U.S. critical infrastructures that are often highly

interconnected and mutually dependent systems. It is important to note that while federal

agencies operate many of the critical infrastructures mentioned above, many others are privately

- owned and operated. Additionally, critical infrastructures are often referred to as a "system of
- systems" because of the interdependencies that exist between various industrial sectors and the
- 730 interconnections between business partners [Peerenboom][Rinaldi]. Overall, critical
- 731 infrastructures are highly interconnected and mutually dependent in complex ways, both
- physically and through a host of information and communications technologies. An incident in
- 733 one infrastructure can directly and indirectly affect other infrastructures through cascading and
- 734 escalating failures.
- For example, both the electrical power transmission and distribution grid industries use
- 736 geographically distributed SCADA control technology to operate highly interconnected and

- 737 dynamic systems consisting of thousands of public and private utilities and rural cooperatives for
- supplying electricity to end users. Some SCADA systems monitor and control electricity
- distribution by collecting data from and issuing commands to geographically remote field control
- stations from a centralized location. SCADA systems are also used to monitor and control water,
- oil, and natural gas distribution, including pipelines, ships, trucks, and rail systems, as well as
- 742 wastewater collection systems.
- 743 SCADA systems and DCS are often networked together. This is the case for electric power
- 744 control centers and electric power generation facilities. Although electric power generation
- facility operation is controlled by a DCS, the DCS must communicate with the SCADA system
- to coordinate production output with transmission and distribution demands.
- 747 Electric power is often thought to be one of the most prevalent sources of disruptions of
- interdependent critical infrastructures. As an example, a cascading failure can be initiated by a
- 749 disruption of the microwave communications network used for an electric power transmission
- 750 SCADA system. The lack of monitoring and control capabilities could cause a large generating
- vi unit to be taken offline, an event that would lead to loss of power at a transmission substation.
- 752 This loss could cause a major imbalance, triggering a cascading failure across the power grid.
- 753 This could result in large area blackouts that could potentially affect oil and natural gas
- production, refinery operations, water treatment systems, wastewater collection systems, and
- 755 pipeline transport systems that rely on the grid for electric power.

756 **2.3 OT System Operation, Architectures, and Components**

- As Figure 1 depicts, a typical OT system contains numerous control loops, human-machine
- interfaces, and remote diagnostics and maintenance tools. The system is built using an array of
- network protocols on layered network architectures. Some critical processes may also include
- 760 safety systems.
- A *control loop* utilizes sensors, actuators, and controllers to manipulate some controlled process.
 A *sensor* is a device that produces a measurement of some physical property and then sends this
- information as *controlled variables* to the controller. The controller interprets the signals and
- 764 generates corresponding *manipulated variables*, based on a control algorithm and target set
- points, which it transmits to the actuators. Actuators such as control valves, breakers, switches,
- and motors are used to directly manipulate the controlled process based on commands from the
- 767 controller.
- 768 In a typical monitoring system, there are no direct connections between the sensors and any
- actuators. Sensor values are transmitted to a monitoring station to be analyzed by a human.
- 770 However, these types of systems can still be considered OT systems (albeit with a human-in-the-
- loop) because the objective of the monitoring system is likely to identify and ultimately mitigate
- an event or condition (e.g., a door alerting that it has been forced opened, resulting in security
- personnel being sent to investigate; an environmental sensor alerting to high temperatures in a
- server room, resulting in control center personnel activating an auxiliary air conditioning unit).
- Operators and engineers use *human-machine interfaces (HMIs)* to monitor and configure set
 points, control algorithms, and adjust and establish parameters in the controller. The HMI also

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- displays process status information and historical information. *Diagnostics and maintenance*
- *utilities* are used to prevent, identify, and recover from abnormal operation or failures.
- 779 Sometimes control loops are nested and/or cascading, whereby the set point for one loop is based
- on the process variable determined by another loop. Supervisory-level loops and lower-level
- 781 loops operate continuously over the duration of a process, with cycle times ranging on the order
- 782 of milliseconds to minutes.

783 784

Figure 1: Basic operation of a typical OT system

785 **2.3.1 OT System Design Considerations**

786 The design of an OT system, including whether a SCADA, DCS, or PLC-based topology is used 787 depends on many factors. This section identifies key factors that drive design decisions regarding 788 the control, communication, reliability, and redundancy properties of the OT system. Because 789 these factors heavily influence the design of the OT system, they also help determine the 790 system's security needs.

 Control Timing Requirements. System processes have a wide range of time-related requirements, including very high speed, consistency, regularity, and synchronization. Humans may not be able to reliably and consistently meet these requirements; automated controllers may be necessary. Some systems may require computation to be performed as close to sensors and actuators as possible to reduce communication latency and perform necessary control actions on time.

- Geographic Distribution. Systems have varying degrees of distribution, ranging from a small system (e.g., local PLC-controlled process) to large, distributed systems (e.g., oil pipelines, electric power grids). Greater distribution typically implies a need for wide area networking (e.g., leased lines, circuit switching, packet switching) and mobile communication.
- Hierarchy. Supervisory control is used to provide a central location that can aggregate data from multiple locations to support control decisions based on the current state of the system.
 Often a hierarchical/centralized control is used to provide human operators with a comprehensive view of the entire system.
- 806 Control Complexity. Often control functions can be performed by simple controllers and
 807 preset algorithms. However, more complex systems (e.g., air traffic control) require human
 808 operators to ensure that all control actions are appropriate for meeting the larger objectives of
 809 the system.
- Availability. Availability (i.e., reliability) requirements of the system are also an important
 factor in design. Systems with strong availability/up-time requirements may require more
 redundancy or alternate implementations across all communications and control.
- Impact of Failures. The failure of a control function could cause substantially different
 impacts across domains. Systems with greater impacts often require the ability to continue
 operations through redundant controls or to operate in a degraded state. The design needs to
 address these requirements.
- Safety. The system's safety requirements are an important factor in design. Systems must be able to detect unsafe conditions and trigger actions to reduce unsafe conditions to safe ones.
 In most safety-critical operations, human oversight and control of a potentially dangerous process is an essential part of the safety system.

821 2.3.2 SCADA Systems

822 Supervisory control and data acquisition (SCADA) systems are used to control dispersed assets 823 where centralized data acquisition is as important as control [Bailey][Boyer]. These systems are 824 used in distribution systems such as water distribution and wastewater collection systems, oil and 825 natural gas pipelines, electrical utility transmission and distribution systems, and rail and other 826 public transportation systems. SCADA systems integrate data acquisition systems with data transmission systems and HMI software to provide a centralized monitoring and control system 827 828 for numerous process inputs and outputs. SCADA systems are designed to collect field 829 information, transfer it to a control center, and display the information to the operator graphically 830 or textually, thereby allowing the operator to monitor or control an entire system from a central 831 location in near real-time. Based on the sophistication and setup of the individual system, control 832 of any individual system, operation, or task can be automatic, or it can be performed by operator

- 833 commands.
- 834 Typical hardware includes a control server placed at a control center, communications equipment
- 835 (e.g., radio, telephone line, cable, or satellite), and one or more geographically distributed field
- 836 sites consisting of remote terminal units (RTUs) and/or PLCs, which control actuators and/or

837 monitor sensors. The control server stores and processes the information from RTU inputs and

838 outputs, while the RTU or PLC controls the local process. The communications hardware allows

the transfer of information and data back and forth between the control server and the RTUs orPLCs. The software is programmed to tell the system what and when to monitor, what parameter

ranges are acceptable, and what response to initiate when a process variable changes outside

acceptable values. An intelligent electronic device (IED), such as a protective relay, may

- communicate directly to the control server, or a local RTU may poll the IEDs to collect the data
- and pass it to the control server. IEDs provide a direct interface to control and monitor
- equipment and sensors. IEDs may be directly polled and controlled by the control server and in
- 846 most cases have local programming that allows for the IED to act without direct instructions
- from the control center. SCADA systems are usually designed to be fault-tolerant systems with
- 848 significant redundancy built into the system, although redundancy may not be a sufficient
- 849 countermeasure in the face of malicious attack.

850 Figure 2 shows the components and general configuration of a SCADA system. The control

center at the top of the diagram houses a control server and the communications routers. Other

852 control center components include the HMI, engineering workstations, and the data historian,

853 which are all connected by a local area network (LAN). The control center collects and logs

854 information gathered by the field sites, displays information to the HMI, and may generate

actions based upon detected events. The control center is also responsible for centralized

alarming, trend analyses, and reporting.

857 The field sites at the bottom of Figure 2 perform local control of actuators and monitor sensors.

858 Field sites are often equipped with a remote access capability to allow operators to perform

remote diagnostics and repairs, usually over a separate dial-up modem or wide area network

860 (WAN) connection. Standard and proprietary communication protocols running over serial and

861 network communications are used to transport information between the control center and field

sites using telemetry techniques such as telephone line, cable, fiber, and radio frequencies (e.g.,

863 broadcast, microwave, satellite).

864 SCADA communication topologies vary among implementations. The various topologies used,

865 including point-to-point, series, series-star, and multi-drop [AGA12], are shown in Figure 3.

866 Point-to-point is functionally the simplest type; however, it can be expensive because of the

867 individual channels needed for each connection. In a series configuration, the number of

- 868 channels used is reduced; however, channel sharing has an impact on the efficiency and
- 869 complexity of SCADA operations. Similarly, the series-star and multi-drop configurations' use
- 870 of one channel per device results in decreased efficiency and increased system complexity.

871 The four basic SCADA topologies shown in Figure 3 can be further augmented by using

872 dedicated devices to manage communication exchanges and perform message switching and

- buffering. Large SCADA systems containing hundreds of RTUs often employ a sub-control
- server to alleviate the burden on the primary server. This type of topology is shown in Figure 4.
- Figure 5 shows an example SCADA system implementation. This particular SCADA system
- 876 consists of a primary control center and three field sites. A second backup control center
- 877 provides redundancy in the event of a primary control center malfunction. Point-to-point

- 878 connections are used for all control center to field site communications, with two connections
- using radio telemetry. The third field site is local to the control center and uses the WAN for
- 880 communications. A regional control center resides above the primary control center for a higher
- 881 level of supervisory control. The corporate enterprise network has access to all control centers
- through the WAN, and field sites can be accessed remotely for troubleshooting and maintenance operations. The primary control center polls field devices for data at defined intervals (e.g., 5
- seconds, 60 seconds) and can send new set points to field devices as required. In addition to
- polling and issuing high-level commands, the control server also watches for priority interrupts
- 886 coming from field site alarm systems.

Figure 2: A general SCADA system layout showing control center devices, communications equipment, and
 field sites

892 Figure 3: Examples of point-to-point, series, series-star, and multi-drop SCADA communications topologies

Figure 5: A comprehensive SCADA system implementation example

- Figure 6 shows an example implementation for rail monitoring and control. This example
- includes a rail control center that houses the SCADA system and three sections of a rail system.
- 900 The SCADA system polls the rail sections for information such as the status of the trains, signal
- 901 systems, traction electrification systems, and ticket vending machines. This information is also
- 902 fed to operator consoles at the HMI stations within the rail control center. The SCADA system
- 903 monitors operator inputs at the rail control center and disperses high-level operator commands to 904 the rail section components. In addition, the SCADA system monitors conditions at the
- 905 individual rail sections and issues commands based on these conditions (e.g., stopping a train to
- 906 prevent it from entering an area that has been determined to be flooded or occupied by another
- 907 train based on condition monitoring).

909

Figure 6: An example rail monitoring and control SCADA system implementation

910 2.3.3 **Distributed Control Systems**

911 Distributed control systems (DCS) are used to control production systems within the same

912 geographic location for industries such as oil refineries, water and wastewater treatment, electric

913 power generation, chemical manufacturing, automotive production, and pharmaceutical

914 processing. These systems are usually process control or discrete part control systems.

915 DCS are integrated as a control architecture containing a supervisory level of control overseeing

- 916 multiple, integrated sub-systems that are responsible for controlling the details of a localized
- 917 process. A DCS uses a centralized supervisory control loop to mediate a group of localized
- 918 controllers that share the overall tasks of carrying out an entire production process [Erickson].
- 919 Product and process control are usually achieved by deploying feedback or feedforward control
- 920 loops, whereby key product and/or process conditions are automatically maintained around a
- 921 desired set point. To accomplish the desired product and/or process tolerance around a specified
- 922 set point, specific process controllers or more capable PLCs are employed in the field and are
- 923 tuned to provide the desired tolerance as well as the rate of self-correction during process upsets.
- 924 By modularizing the production system, a DCS reduces the impact of a single fault on the overall 925
- system. In many modern systems, the DCS is interfaced with the corporate enterprise network to
- 926 give business operations a view of production.
- 927 An example implementation showing the components and general configuration of a DCS is
- 928 depicted in Figure 7. This DCS encompasses an entire facility from the bottom-level production
- 929 processes up to the corporate enterprise layer. In this example, a supervisory controller (control
- 930 server) communicates to its subordinates via a control network. The supervisor sends set points
- to and requests data from the distributed field controllers. The distributed controllers control their 931
- 932 process actuators based on control server commands and sensor feedback from process sensors.
- 933 Figure 7 gives examples of low-level controllers found on a DCS system. The field control
- 934 devices shown include a machine controller, a PLC, and a process controller. The machine
- 935 controller interfaces with sensors and actuators using point-to-point wiring, while the other three
- 936 field devices incorporate fieldbus networks to interface with process sensors and actuators.
- 937 Fieldbus networks eliminate the need for point-to-point wiring between a controller and
- 938 individual field sensors and actuators. Additionally, a fieldbus allows greater functionality
- 939 beyond control, including field device diagnostics, and can accomplish control algorithms within
- 940 the fieldbus, thereby avoiding signal routing back to the PLC for every control operation.
- 941 Standard industrial communication protocols designed by industry groups such as Modbus and
- 942 Fieldbus [Berge] are often used on control networks and fieldbus networks.
- 943 In addition to the supervisory-level and field-level control loops, intermediate levels of control
- 944 may also exist. For example, in the case of a DCS controlling a discrete part manufacturing
- 945 facility, there could be an intermediate level supervisor for each cell within the plant. This
- 946 supervisor encompasses a manufacturing cell containing a machine controller that processes a
- 947 part and a robot controller that handles raw stock and final products. There could be several of
- 948 these cells that manage field-level controllers under the main DCS supervisory control loop.

952 2.3.4 Programmable Logic Controller-Based Topologies

953 PLCs are used in both SCADA and DCS systems as the control components of an overall

954 hierarchical system to provide local management of processes through feedback control, as

described in the sections above. In the case of SCADA systems, they may provide similar

956 functionality to RTUs. When used in DCS, PLCs are implemented as local controllers within a

- 957 supervisory control scheme.
- 958 In addition to PLC usage in SCADA and DCS, PLCs can be implemented as the primary
- 959 controller in smaller OT system configurations to provide operational control of discrete
- 960 processes (e.g., automobile assembly lines, process controllers). These topologies differ from
- 961 SCADA and DCS in that they generally lack a central control server or HMI and, therefore,
- 962 primarily provide closed-loop control with minimal human involvement. PLCs have a user-
- 963 programmable memory for storing instructions for the purpose of implementing specific
- 964 functions such as I/O control, logic, timing, counting, three mode proportional-integral-
- 965 derivative (PID) control, communication, arithmetic, and data and file processing.
- 966 Figure 8 shows control of a manufacturing process being performed by a PLC over a fieldbus
- 967 network. The PLC is accessible via a programming interface located on an engineering
- 968 workstation, and data is stored in a data historian, all connected on a LAN.

969

970

971

Figure 8: A PLC control system implementation example

972 **2.3.5 Building Automation Systems**

973 Building automation systems (BAS) are a type of OT used to control many systems used in a

building, including heating, ventilation, and air conditioning (HVAC), fire, electrical, lighting,

975 physical access control, physical security, and other utility systems. Most modern buildings

976 contain some form of a BAS when they are constructed; however, older buildings and equipment

977 may have to be retrofitted to take advantage of the benefits BAS provide.

978 Some of the most common functions of BAS are maintaining the environmental conditions for

979 occupant comfort, reducing energy consumption, reducing operating and maintenance costs,

980 increasing security, recording historical data (e.g., temperature, humidity), and performing

981 general equipment monitoring (e.g., provide alerts to building personnel upon device failure or

an alarm condition).

- 983 An example of a BAS is shown in Figure 9. The architecture can be compared to a DCS, as it has
- a similar structure and distributed elements (typically throughout a building or buildings) which
- 985 may communicate over wired or wireless paths to controllers or gateways. For example,
- 986 environmental control sensors can provide the temperature and humidity to a building controller.
- 987 If the sensor values are outside of the set points, the controller can signal a variable air volume
- 988 (VAV) box to increase or decrease airflow and bring the temperature to the desired state.
- 989 Similarly, a building occupant scanning their identification badge at a badge reader can result in
- 990 the credentials being sent to the access control controller and application control server to
- 991 determine if access should be granted.

992

Figure 9: A comprehensive Building Automation System implementation example

994 **2.3.6 Physical Access Control Systems**

Physical access control systems (PACS) are a type of physical security system designed to
control access to an area. Unlike standard physical barriers, physical access control can control
who is granted access, when the access is granted, and how long the access should last.

An *access point* is the entrance/barrier where access control is required. Some common physical access control examples of access points are doors and locks, security gates, turnstiles, and vehicular gate arms. Depending on the type of facility there can be a single access point (e.g., for high-security areas) or many (e.g., for a large office building).

1002 An identification (ID) or personal credential is used to identify the authorized user trying to gain

access to the area or facility. Most PACS require a user to have credentials to gain entrance to a

1004 facility or access sensitive data. Examples of identification credentials include simple controls

1005 (e.g., PIN codes, passwords, key fobs, key cards) and more advanced credentials (e.g., encrypted

badges, mobile credentials). Identification credentials allow the system to know who is

1007 attempting to gain access and to maintain access logs.

1008 Readers and/or keypads are typically located at the access point. The reader reads the data and

sends it to a door controller to validate the credential to determine if access should be authorized.

1010 If a keypad or biometric reader is also required (i.e., for multi-factor authentication), the user will

1011 enter their PIN or perform the biometric scan following their credential scan.

1012

1013

Figure 10: A Physical Access Control System implementation example

1014 An example of a PACS is shown in Figure 10. In this example, the door controller receives

1015 credential data from the reader and verifies the identification credential. If the credential is

approved by the access control server, the control panel transmits the command to authorize

1017 access and the door will be unlocked. If the credential is denied, the door will remain locked, and

1018 the user will not be able to gain entry. All access attempts are logged by the door controller(s)

1019 and ultimately the access control server. The access control server is the repository for user

- 1020 information, access privileges, and audit logs. Depending on the system, the server might be on-
- 1021 premises or managed in the cloud.

1022 2.3.7 Safety Systems

1023 Many of the physical processes that OT systems control have the potential to create hazardous

situations to life and safety, property, and the environment. Safety systems are designed to

1025 reduce the likelihood and/or consequence of these potentially hazardous situations by bringing

1026 the system to a safe state. There are several types of safety systems related to OT environments, 1027 including emergency shut down (ESD), process safety shutdown (PSS), and fire and gas systems

- 1028 (FGS).
- 1029 One of the more well-known types of safety system is the Safety Instrumented System (SIS). An
- 1030 SIS is a system that is composed of one or more Safety Instrumented Functions (SIFs). An SIF is
- 1031 an engineered system typically comprised of sensors, logic solvers, and final control elements
- 1032 (e.g., actuators) whose purpose is to bring a system to a safe state when predetermined thresholds
- are violated. They are implemented as part of an overall risk reduction strategy which is intended
- 1034 to reduce the likelihood and/or potential consequences of a previously identified event so it is
- 1035 within the organization's risk tolerance. Numerous other terms are associated with safety
- systems; however, the SIS is specifically designed in accordance with IEC 61511 [IEC61511].
- 1037 SIS are typically found in chemical, refinery, and nuclear processes.
- 1038 SIS are typically independent from all other control systems in such a manner that a failure of the
- 1039 Basic Process Control System (BPCS) will not impact SIS functionality in a deleterious manner.
- 1040 Historically, SIS were designed to be standalone, physically and logically separated, and air
- 1041 gapped from the rest of the control system. In the configuration shown in Figure 11, the SIS and
- 1042 BPCS operated completely independent of each other with no direct communication between the
- 1043 systems. However, some modern SIS have been designed to allow communication with the
- 1044 control system. These types of SIS are called *Integrated Control and Safety Systems (ICSS)*. An
 1045 ICSS solution may be an all-in-one device from a single vendor or may incorporate multiple
- 1045 devices from multiple vendors. While ICSS combine the functionality of both control and safety
- 1047 systems, the SIS still must comply with the requirements outlined in IEC 61511. One of the
- advantages to this ICSS methodology is the ability to communicate information from the SIS to
- 1049 the BPCS.
- 1050

Figure 11: A Safety Instrumented System implementation example

1053 2.3.8 Industrial Internet of Things

1054 The Industrial Internet of Things (IIoT) consists of sensors, instruments, machines, and other 1055 devices that are networked together and use internet connectivity to enhance industrial and 1056 manufacturing business processes and applications [Berge]. As IT and OT systems continue to 1057 converge and the systems become even more interconnected, control of physical processes

1058 remains a relatively unique and critical concept of OT.

1059 The Industrial IoT Consortium proposes a three-tier system architecture model for representing

1060 IIoT systems [IIRA19], consisting of the Edge Tier, Platform Tier, and Enterprise Tier. Each tier

1061 plays a specific role in processing the data flows and control flows involved in usage activities.

1062 The tiers are connected by three networks: the Proximity Network, Access Network, and Service

1063 Network. An example architecture is shown in Figure 12.

1064 The Enterprise Tier implements domain-specific applications and decision support systems,

- 1065 provides interfaces to end-users, receives data flows from the other tiers, and issues control
- 1066 commands to the other tiers.

1067 The *Platform Tier* receives, processes, and forwards control commands from the Enterprise Tier

1068 to the Edge Tier. It consolidates processes and analyzes data flows from the other tiers, provides

1069 management functions for devices and assets, and offers non-domain specific services such as

1070 data query and analytics. Based on the specific implementation, these functions can be

1071 implemented on the IIoT Platform that is deployed in an on-site datacenter, an off-site

1072 datacenter, or in the cloud.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 1073 The *Edge Tier* collects data from the edge nodes using the proximity network. The architectural
- 1074 characteristics of this tier vary depending on the specific implementation (e.g., geographical
- 1075 distribution, physical location, governance scope). It is a logical layer rather than a true physical
- 1076 division. From the business perspective, the location of the edge depends on the business
- 1077 objectives.

1078

1079

Figure 12: A three-tiered Industrial Internet of Things system architecture

1080 *Edge computing* is a decentralized computing infrastructure in which computing resources and

application services can be distributed along the communication path between the data source

and the cloud. It exists vertically within the full stack (i.e., from the device to the cloud) and

1083 horizontally across IIoT subsystems. The edge is not merely a way to collect data for

transmission to the datacenter or cloud; it also processes, analyzes, and acts on data collected at

1085 the edge and is, therefore, essential for optimizing industrial data at every aspect of an operation.

1086 The IIoT system architecture is fully distributed and can support a wide range of interactions and 1087 communication paradigms, including:

- 1088 Peer-to-peer networking (e.g., security cameras communicating about identified objects)
- 1089 Edge-device collaboration (e.g., wind turbines in remote locations)
- 1090 Distributed queries across data stored in devices, in the cloud, and anywhere in between
- 1091 Distributed data management, defining where and what data is to be stored, and for how long
- 1092 Data governance including quality, discovery, usability, privacy and security

1093 The Proximity Network connects edge nodes (e.g., sensors, actuators, devices, OT systems and 1094 assets) to the stack. It typically connects these edge nodes as one or more clusters to a gateway 1095 that bridges to other networks. The Access Network enables connectivity for data and control 1096 flow between the Edge and Platform Tiers. This connection may be a corporate network, or an 1097 overlay private network over the public Internet or a 4G/5G network. The Service Network 1098 enables connectivity between the services in the Platform Tier, the Enterprise Tier, and the 1099 services within each tier. This connectivity may be an overlay private network over the public 1100 Internet or the Internet itself, allowing enterprise-grade security between end-users and services.

1101 **2.4** Comparing OT and IT System Security

OT has many characteristics that differ from traditional IT systems, including different risks and priorities. Some of these include significant risk to the health and safety of human lives, serious damage to the environment, and financial issues such as production losses. OT has different performance and reliability requirements and uses OSs and applications that may be considered unconventional in a typical IT network environment. Security protections must be implemented in a way that maintains system integrity during normal operations as well as during times of cyber-attack [Knapp].

1109 Initially, OT systems had little resemblance to IT systems in that OT were isolated systems

1110 running proprietary control protocols using specialized hardware and software. Widely available,

1111 low-cost Ethernet, Internet Protocol (IP), and wireless devices are now replacing the older 1112 proprietary technologies, which increases the likelihood of cybersecurity vulnerabilities and

1113 incidents. As OT continues to adopt IT technologies to promote corporate connectivity and

1114 remote access capabilities, such as using industry standard computers, OSs, and network

1115 protocols, OT systems and devices are increasingly resembling IT systems. This integration

1116 supports new IT capabilities, but it provides significantly less isolation for OT from the outside

1117 world than predecessor systems, creating a greater need to secure them. While security solutions

1118 have been designed to deal with these issues in typical IT systems, special precautions must be

1119 taken when introducing these same solutions to OT environments. In some cases, new security

1120 solutions are needed that are tailored to the OT environment.

1121 The following lists some special considerations when considering security for OT:

Timeliness and Performance Requirements. OT are generally time-critical, with the criterion for acceptable levels of delay and jitter dictated by the individual installation. Some systems require reliable, deterministic responses. High throughput is typically not essential to OT. In contrast, IT systems typically require high throughput, and they can typically withstand some level of delay and jitter. For some OT, automated response time or system response to human interaction is very critical. Many OT utilize real-time OSs (RTOS), where

- real-time refers to timeliness requirements. The units of real-time are highly application-dependent and must be explicitly stated.
- 1130 • Availability Requirements. Many OT processes are continuous in nature. Unexpected 1131 outages of systems that control industrial processes are not acceptable. Outages often must be 1132 planned and scheduled days or weeks in advance. Exhaustive pre-deployment testing is 1133 essential to ensure high availability (i.e., reliability) for the OT. OT systems often cannot be 1134 stopped and started without affecting production. In some cases, the products produced or 1135 equipment being used are more important than the information being relayed. Therefore, 1136 typical IT strategies (e.g., rebooting a component) are usually not acceptable for OT due to the adverse impact on the requirements for high availability, reliability, and maintainability. 1137 1138 Some OT employ redundant components, often running in parallel, to provide continuity when primary components are unavailable. 1139
- Risk Management Requirements. In a typical IT system, primary concerns include data confidentiality and integrity. For OT, primary concerns include human safety, fault tolerance to prevent loss of life or endangerment of public health or confidence, regulatory compliance, loss of equipment, loss of intellectual property, or lost or damaged products. The personnel responsible for operating, securing, and maintaining OT must understand the important link between safety and security. Any security measure that impairs safety is unacceptable.
- Physical Effects. Field devices (e.g., PLCs, operator stations, DCS controllers) are directly responsible for controlling physical processes. OT can have complex interactions with physical processes and consequences in the OT domain that can manifest in physical events. Understanding these potential physical effects often requires communication between experts in OT and experts of the particular physical domain.
- System Operation. OT OSs and control networks are often quite different from their IT counterparts, requiring different skill sets, experience, and levels of expertise. Control networks are typically managed by control engineers, not IT personnel. Assumptions that differences are insignificant can have disastrous consequences on system operations.
- Resource Constraints. OT and their RTOS are often resource-constrained systems that do not include typical contemporary IT security capabilities. Legacy systems are often lacking resources common on modern IT systems. Many systems may not have desired features including encryption capabilities, error logging, and password protection. Indiscriminate use of IT security practices in OT may cause availability and timing disruptions. There may not be computing resources available on OT components to retrofit these systems with current security capabilities. Adding resources or features may not be possible.
- Communications. Communication protocols and media used by OT environments for field device control and intra-processor communication are typically different from IT environments and may be proprietary.
- Change Management. Change management is paramount to maintaining the integrity of
 both IT and OT systems. Unpatched software represents one of the greatest vulnerabilities to
 a system. Software updates on IT systems, including security patches, are typically applied in
 a timely fashion based on appropriate security policy and procedures. In addition, these
 procedures are often automated using server-based tools. Software updates on OT cannot

- always be implemented on a timely basis. These updates need to be thoroughly tested by both
- 1171 the vendor and the end user of the industrial control application before being implemented.
- 1172 Additionally, the OT owner must plan and schedule OT outages days/weeks in advance. The
- 1173 OT may also require revalidation as part of the update process. Another issue is that many
- 1174 OT utilize older versions of OSs that are no longer supported by the vendor through patches.
- 1175 Change management is also applicable to hardware and firmware. The change management
- 1176 process, when applied to OT, requires careful assessment by OT experts (e.g., control 1177 engineers) working in conjunction with security and IT personnel.
- Managed Support. Typical IT systems allow for diversified support styles, perhaps supporting disparate but interconnected technology architectures. For OT, service support is in some instances available only from a single vendor. In some instances, third-party security solutions are not allowed due to OT vendor licensing and service agreements, and loss of service support can occur if third-party applications are installed without vendor acknowledgement or approval.
- Component Lifetime. Typical IT components have a lifetime on the order of three to five years due to the quick evolution of technology. For OT where technology has been developed in many cases for specific uses and implementations, the lifetime of the deployed technology is often in the order of 10 to 15 years, and sometimes longer.
- Component Location. Most IT components and some OT components are located in business and commercial facilities physically accessible by local transportation. Remote locations may be utilized for backup facilities. Distributed OT components may be isolated, remote, and require extensive transportation effort to reach. Component location also needs to consider necessary physical and environmental security measures.
- 1193 Table 1 summarizes some of the typical differences between IT and OT systems.
- 1194

Table 1: Summary of typical differences between IT and OT systems

Category	Information Technology	Operational Technology
Performance Requirements	 Non-real time Response must be consistent. High throughput is demanded. High delay and jitter may be acceptable. Emergency interaction is less critical. Tightly restricted access control can be implemented to the degree necessary for security. 	 Real-time Response is time-critical. Modest throughput is acceptable. High delay and/or jitter is not acceptable. Response to human and other emergency interaction is critical. Access to OT should be strictly controlled but should not hamper or interfere with human-machine interaction.
Availability (Reliability) Requirements	 Responses such as rebooting are acceptable. Availability deficiencies can often be tolerated, depending on the system's operational requirements. 	 Responses such as rebooting may not be acceptable because of process availability requirements. Availability requirements may necessitate redundant systems. Outages must be planned and scheduled days/weeks in advance. High availability requires exhaustive predeployment testing.

Category	Information Technology	Operational Technology
Risk Management Requirements	 Manage data Data confidentiality and integrity is paramount. Fault tolerance is less important – momentary downtime is not a major risk. Major risk impact is delay of business operations. 	 Control physical world Human safety is paramount, followed by protection of the process. Fault tolerance is essential; even momentary downtime may not be acceptable. Major risk impacts are regulatory non-compliance, environmental impacts, and loss of life, equipment, or production.
System Operation	 Systems are designed for use with typical OSs. Upgrades are straightforward with the availability of automated deployment tools. 	 Systems often use differing and possibly proprietary OSs, sometimes without security capabilities built in. Software changes must be carefully made, usually by software vendors, because of the specialized control algorithms and perhaps modified hardware and software involved.
Resource Constraints	• Systems are specified with enough resources to support the addition of third-party applications such as security solutions.	• Systems are designed to support the intended industrial process and may not have enough memory and computing resources to support the addition of security capabilities.
Communications	 Standard communications protocols Primarily wired networks with some localized wireless capabilities Typical IT networking practices 	 Many proprietary and standard communication protocols Several types of communications media used, including dedicated wire and wireless (radio and satellite) Complex networks that sometimes require the expertise of control engineers
Change Management	 Software changes are applied in a timely fashion in the presence of good security policy and procedures. The procedures are often automated. 	 Software changes must be thoroughly tested and deployed incrementally throughout a system to ensure that the integrity of the OT system is maintained. OT outages often must be planned and scheduled days/weeks in advance. OT may use OSs that are no longer supported.
Managed Support	Allow for diversified support styles.	Service support is usually via a single vendor.
Component Lifetime	Lifetime on the order of three to five years	Lifetime on the order of 10 to 15 years
Components Location	Components are usually local and easy to access.	• Components can be isolated, remote, and require extensive physical effort to gain access to them.

1195

1196 In summary, the operational and risk differences between IT and OT systems create the need for

1197 increased sophistication in applying cybersecurity and operational strategies. A cross-functional

team of control engineers, control system operators, and IT security professionals must work

1199 closely to understand the possible implications of the installation, operation, and maintenance of

1200 security solutions in conjunction with control system operation. IT professionals working with

1201 OT need to understand the reliability impacts of information security technologies before

1202 deployment. Some of the OSs and applications running on OT may not operate correctly with

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 1203 commercial-off-the-shelf (COTS) IT cybersecurity solutions because of their unique
- 1204 requirements.

1205 **3** OT Cybersecurity Program Development

1206 To mitigate cybersecurity risk to their OT systems, organizations need to develop and deploy an

1207 OT cybersecurity program. It should be consistent and integrated with existing IT cybersecurity

1208 programs and practices, but also account for the specific requirements and characteristics of OT

1209 systems and environments. Organizations should review and update their OT cybersecurity plans

- 1210 and programs regularly to reflect changes in technologies, operations, standards, regulations, and
- 1211 the security needs of specific facilities.
- 1212 Effective integration of cybersecurity into the operation of OT requires defining and executing a
- 1213 comprehensive program that addresses all aspects of cybersecurity. This includes defining the
- 1214 objectives and scope of the program, establishing a cross functional team that understands OT
- 1215 and cybersecurity, defining policies and procedures, identifying the cyber risk management
- 1216 capabilities that include people, process, and technology, as well as identifying day-to-day
- 1217 operations of event monitoring and auditing for compliance and improvement.
- 1218 When a new system is being designed and installed, it is imperative to take the time to address
- 1219 security throughout the life cycle, including architecture, procurement, installation, maintenance,
- and decommissioning. Deploying systems to the field based on the assumption that these systems
- 1221 will be secured later introduces significant risk to the systems and the organization. If there
- aren't sufficient time and resources to secure the system properly before deployment, it is
- 1223 unlikely that security will be addressed at a later time. Since new OT systems are designed and
- deployed less frequently than IT systems, it is much more common to improve, expand, or
- 1225 update an existing OT system than to design a new one.
- 1226 This section introduces the basic process for developing an OT cybersecurity program and
- applies to new and deployed OT systems. Additional guidance for developing the specific
- 1228 elements of an OT cybersecurity program can be found in the Sections listed in Section 3.3.10.
- 1229 Organizations may also wish to consult ISA-62443-2-1, Security for Industrial Automation and
- 1230 Control Systems: Security Program Requirements for IACS Asset Owners, which describes
- another view of the elements of a cybersecurity program for use in the OT environment. It
- 1232 provides guidance on how to meet the cybersecurity requirements described for each element of
- 1233 the cybersecurity program [ISA62443].

3.1 Establish a Charter for OT Cybersecurity Program

- 1235 Senior management must demonstrate a clear commitment to cybersecurity and should
- 1236 communicate its importance throughout the organization. Cybersecurity is a business
- 1237 responsibility shared by all members of the organization and especially by its leaders and IT and
- 1238 OT teams. Commitment to cybersecurity, both IT and OT, can be demonstrated by establishing a
- 1239 charter for a cybersecurity program with adequate funding, visibility, governance, and support
- 1240 from senior leaders. A cybersecurity program that has commitment from senior management is 1241 more likely to achieve the mission and business goals of the organization.
- 1242 A charter for a cybersecurity program is a plain-language high-level description that establishes 1243 clear ownership and accountability for protecting the OT resources and provides a mandate for

- 1244 the most senior person responsible to establish and maintain the cybersecurity program (e.g.,
- 1245 CISO). In this section, the focus is on the OT-specific program. However, the OT cybersecurity
- 1246 program should be integrated with the overall cybersecurity program for the organization.
- 1247 A cybersecurity program charter should include program objectives, scope, and responsibilities.
- 1248 Senior management establishes the OT cybersecurity program charter and identifies an OT
- 1249 cybersecurity manager with appropriate scope, responsibility, and authority to lead the OT
- 1250 cybersecurity program. The OT cybersecurity manager should define the roles and
- responsibilities of system owners, mission/business process managers, and users. The OT
- 1252 cybersecurity manager should document the objectives and scope of the OT security program,
- including the business organizations affected, the systems and networks involved, the budget and
- resources required, and the division of responsibilities.
- 1255 The organization may already have an information security program in place or have developed
- 1256 one for its IT systems. The OT cybersecurity manager should identify which existing practices to
- leverage, and which practices are specific to the OT system. In the long run, it will be more
- 1258 effective if the team can share resources with others in the organization that have similar
- 1259 objectives.

1260 **3.2** Business Case for OT Cybersecurity Program

- 1261 The cybersecurity of OT systems is a critical component in the overall security for the
- 1262 organization. An OT cybersecurity program considers the characteristics of OT systems that 1263 differ from IT systems, necessitating special consideration in securing OT
- 1263 differ from IT systems, necessitating special consideration in securing OT.
- Attacks on OT systems are increasing and can cause physical damage or even halt production.
 As OT systems are increasingly being connected to IT networks, relying on traditional measures
- 1266 is not enough to protect such systems from cyber-attack. e.g., traditional measures like air gap
- are no longer realistic as systems are more connected to the enterprise network for productivity
- 1267 are no longer realistic as systems are more connected to the enterprise network for productivity 1268 or efficiency reasons. Also, OT systems can be used as an entry point to the organizational IT
- 1269 systems and other enterprise systems. Therefore, security measures tailored to the OT system are
- required to protect the organization. The OT cybersecurity program can provide an organization-
- 1271 wide strategy to secure the system.
- 1272 The ability to perform its missions and goals is an important requirement for many organizations
- and OT operators. Managing the risk of the OT system to ensure the organization meets its goals
- and missions is a high priority for these OT operators. The potential impact of a cybersecurity
- 1275 event could be severe—it could impact the organization's mission and objectives, the
- 1276 environment, regulatory compliance, and even human safety. An OT cybersecurity program can
- 1277 provide a methodology and strategy to mitigate the risks.

1278 **3.2.1 Benefits of Cybersecurity investments**

- 1279 OT cybersecurity supports the mission and business functions of the organization. Investment in 1280 OT cybersecurity can provide additional benefits, including:
- 1281 Improving OT system safety, reliability, and availability

- 1282 Improving OT system efficiency
- 1283 Reducing community concerns
- 1284 **■** Reducing legal liabilities
- 1285 Meeting regulatory requirements
- 1286 Helping with insurance coverage and cost

1287 A strong OT cybersecurity program is fundamental to a sustainable business operation. An OT cybersecurity program with OT-specific security policies can potentially enhance system 1288 1289 reliability and availability. This also includes minimizing unintentional OT system information 1290 security impacts from inappropriate testing, policies, and misconfigured systems. The importance 1291 of secure systems should be further emphasized as business reliance on interconnectivity 1292 increases. Denial of service (DoS) attacks and malware (e.g., worms, viruses) have become very 1293 common and have already impacted OT systems. Cyber-attacks can have significant physical 1294 and consequential impacts. The major categories of impacts are as follows:

- Physical Impacts. Physical impacts encompass the set of direct consequences of OT failure.
 The potential effects of paramount importance include personal injury and loss of life. Other
 effects include the loss of property (including data) and potential damage to the environment.
- Economic Impacts. Economic impacts are a second-order effect from physical impacts ensuing from an OT incident. Physical impacts could result in repercussions to system operations, which in turn inflict a greater economic loss on the facility, organization, or others dependent on the OT systems. Unavailability of critical infrastructure (e.g., electrical power, transportation) can have economic impact far beyond the systems sustaining direct and physical damage. These effects could negatively impact the local, regional, national, or possibly global economy.
- Social Impacts. Another second-order effect, the consequence from the loss of national or public confidence in an organization, is many times overlooked. It is, however, a very real consequence that could result from an OT incident.
- Examples of potential consequences of an OT incident are listed below. Note that items in this list are not independent. For example, release of hazardous material can lead to injury or death.
- 1310 Impact on national security—facilitate an act of terrorism
- 1311 Reduction or loss of production at one site or multiple sites simultaneously
- 1312 Injury or death of employees
- 1313 Injury or death of persons in the community
- 1314 Damage to equipment
- 1315 **■** Release, diversion, or theft of hazardous materials
- 1316 Environmental damage
- 1317 Violation of regulatory requirements
- 1318
 Product contamination

- 1319 Criminal or civil legal liabilities
- 1320 Loss of proprietary or confidential information
- 1321 Loss of brand image or customer confidence

Undesirable incidents of any sort detract from the value of an organization, but safety and
security incidents can have negative impacts that last longer than other types of incidents on all

1324 stakeholders—employees, shareholders, customers, and the communities in which an

organization operates. The list of potential business consequences needs to be prioritized to focus

1326 on the consequences that senior management will find the most compelling. The highest priority

- 1327 items should be evaluated to estimate the annual business impact, preferably but not necessarily
- 1328 in financial terms.

1329 **3.2.2 Building an OT Cybersecurity Business Case**

1330 A well-defined business case for an OT cybersecurity program is essential for management buy-

1331 in to ensure the long-term commitment of the organization and allocation of resources needed for

development, implementation, and maintenance of the program. Without a strong commitment

by senior management, it may be difficult to prioritize the allocation of resources to sustain the

- 1334 program.
- 1335 The first step in developing an OT security program is to identify the business objectives and
- 1336 missions of the organization, and how the cybersecurity program can lower risk and protect the

1337 organization's ability to perform its mission. The business case should capture the business

1338 concerns of senior management and provide the business impact and financial justification for

1339 creating an integrated organizational cybersecurity program. It should include detailed

- 1340 information about the following:
- Benefits of creating an integrated security program
- 1342 Detential costs and failure scenarios if an OT cybersecurity program is not implemented
- High-level overview of the process required to implement, operate, monitor, review, maintain, and improve the information security program

Costs and resources required to develop, implement, and maintain the security program should be considered. The economics benefit of the cybersecurity program may be evaluated similar to worker health and safety programs. However, an attack on the OT system could have significant consequences that far exceed the monetary costs.

1349 **3.2.3 Resources for Building Business Case**

1350 Significant resources can be found in external resources from other organizations in similar lines

1351 of business—either individually or in information sharing exchanges, trade and standards

1352 organizations, consulting firms, and internal resources in related risk management programs or

engineering and operations. External organizations can often provide useful tips as to what

1354 factors most strongly influenced management to support their efforts and what resources within

their organizations proved most helpful. For different industries these factors may be different,

1356 but there may be similarities in the roles that other risk management specialists can play.

- Appendix D provides a list and short descriptions of some of the current activities in OTsecurity.
- 1359 Internal resources in related risk management efforts (e.g., information security, health, safety
- and environmental risk, physical security, business continuity) can provide tremendous
- 1361 assistance based on their experiences with related incidents in the organization. This information
- is helpful from the standpoint of prioritizing threats and estimating business impact. These
- 1363 resources can also provide insight into which managers are focused on dealing with which risks
- and, thus, which managers might be the most appropriate or receptive to serving as a champion.

1365 **3.2.4** Presenting the OT Cybersecurity Business Case to Leadership

1366 It is critical for the success of the OT cybersecurity program that it receives senior management 1367 buy-in and that they actively participate in the program. Organization-level management that 1368 encompasses both IT and OT operations has the perspective to understand the risks and the 1369 authority to assume responsibility for them

- authority to assume responsibility for them.
- 1370 Senior management will be responsible for approving and driving information security policies,
- 1371 assigning security roles and responsibilities, and implementing the information security program
- 1372 across the organization. Funding for the entire program can usually be done in phases. While
- 1373 some funding may be required to start the program, additional funding can be obtained later as
- the security vulnerabilities and needs of the program are better understood and additional
- 1375 strategies are developed. Additionally, costs should be considered for retrofitting the OT for
- 1376 security versus addressing security to begin with.
- 1377 Often, a good approach to obtain management buy-in is to base the business case on a successful
- example. The business case should inform management that the other organization had the same
- problem and then present the solution they have found and how they were able to solve it. This
- 1380 will often prompt management to ask how this solution might be applicable to their organization.
- When presenting the business case to leadership, it may be helpful to mention the specificchallenges in securing the OT systems:
- 1383 OT systems operate under different environments and requirements than IT systems. For
 1384 example, OT systems tend to prioritize availability and safety over other factors like
 1385 confidentiality.
- IT programs or tools may not be suitable for OT systems. The security measures or tools that work well with IT systems may not work effectively in the OT environment.
- Compensatory measures may be an effective solution to secure an OT system without affecting system performance.
- Protecting OT systems is critical, and a cybersecurity incident on an OT system may have catastrophic consequences that affect human life and the environment.

3.3 OT Cybersecurity Program Content

- 1393 This section provides recommendations for establishing, implementing, maintaining, and
- 1394 continually improving an OT cybersecurity program. These recommendations, when
- 1395 implemented and maintained, provide a security roadmap that helps to manage OT cybersecurity
- 1396 risk. These recommendations are independent, which allows the organization to select
- 1397 approaches and technologies most suitable to their needs.
- 1398 An OT cybersecurity program typically tailors to a specific OT environment. An organization
- 1399 may have multiple sites, each with multiple specific OT environments. In such a situation, it is
- 1400 recommended that an organizational-level OT security program be defined whose
- 1401 recommendations cascade down and adapt to the needs of individual sites and OT environments.
- 1402 The effectiveness of an OT cybersecurity program is often enhanced through coordination or
- 1403 integration with the organization's processes and information security program. The
- 1404 organizational information security program typically focuses on confidentiality, integrity, and
- availability, in that order, of information for the entire organization. Information security
- 1406 programs generally do not specifically address all the security and operational needs of an OT
- 1407 environment. In the OT environment, the focus is usually on safety, availability, integrity, and
- 1408 confidentiality, in that order. This difference in focus and priorities between IT and OT security
- 1409 programs should be kept in mind. NIST SP 800-100, *Information Security Handbook: A Guide*
- 1410 for Managers [SP800-100], provides a broad overview of information security program elements
- 1411 to assist in establishing and implementing an information security program in an organization.
- 1412 The lifespan of an OT system can exceed twenty years. As a result, many legacy systems may
- 1413 contain hardware and software that are no longer supported by the vendors and cannot be
- 1414 patched or updated to protect against known vulnerabilities. In that case, the security program
- should tailor to the unique characteristics of the legacy system to determine if the controls are
- applicable. In situations where security controls are not supported by the legacy OT system,
- 1417 compensating controls should be considered. For example, anti-malware software may not be1418 available for systems such as PLCs and DCS, which means that malware protection requirements
- 1419 cannot be applied to these endpoints. In this case, a compensating control should be considered,
- 1420 e.g., using a firewall with deep packet inspection capability that can monitor and block advanced
- 1421 threats like malware, disabling unused ports in switches, or physically securing switches.
- 1422 The primary purpose of investing in a cybersecurity program is risk management. Risk to
- 1423 operations exists because of the potential of threat actors exploiting the vulnerabilities in the
- applications and infrastructures. Therefore, the most appropriate decision regarding what to
- 1425 include in the scope of a cybersecurity program can be made if investments in this program are
- 1426 viewed through the lens of corporate risk management. To help design and drive a cybersecurity
- 1427 program with a risk management perspective, the risk management framework defined by NIST
- 1428 800-37r2 [SP800-37r2] is used to define the core tasks and the processes for implementing a
- 1429 cybersecurity program. This is briefly summarized in the subsection "Implement an OT Security
- 1430 RMF" and further elaborated in Section 4.
- 1431 The OT cybersecurity program also needs to address policy exceptions and deviations. In a
- 1432 demanding OT environment, situations may arise that require a temporary deviation from the

- security policy in order to maintain the mission or goal of the OT system. Such deviations or
- exceptions must be handled with great care and receive approval from management and the
- 1435 cross-functional team. The security program can establish a policy and procedure for handling
- 1436 policy exceptions. All of these guidance documents recognize that one size does not fit all;
- rather, domain knowledge combined with site-specific constraints should be applied in adapting
- 1438 the guidance to the specific organization.

1439 3.3.1 Establish OT Cybersecurity Governance

- 1440 The governance should include policies, procedures, and processes to manage the organization's 1441 regulatory, legal, risk, environmental, and operational requirements. The governance should
- 1441 regulatory, legal, risk, environmental, and operational requirements. The governance should 1442 ensure that the policies, procedures, and processes are well understood by the staff and inform
- 1443 the management of OT cybersecurity risk. To establish an effective OT cybersecurity
- 1444 governance capability, develop a process and assign the responsibility and accountability to the
- 1445 appropriate role in the corporate risk management function to ensure that the various elements of
- 1446 an OT cybersecurity program are operational and effective, and that it is integrated with the
- 1447 corporate risk management function. Typically, a cybersecurity governance process should
- 1448 include the following:
- 1449 Ensure that OT cybersecurity policy is established and communicated
- Ensure that OT cybersecurity roles and responsibilities are coordinated and aligned with
 internal roles and external partners
- Ensure that legal and regulatory requirements regarding OT cybersecurity, including privacy, are understood and managed
- 1454 Ensure that cybersecurity risks are integrated with corporate risk management processes
- 1455 Further guidance for establishing OT cybersecurity guidance can be found in Section 6.
- 1456 Additional details with specific examples for establishing a cybersecurity governance capability
- are also provided in NIST Internal Report (NISTIR) 8183A, *Cybersecurity Framework*
- 1458 Manufacturing Profile Low Impact Level Example Implementations Guide [IR8183A].

14593.3.2Build and Train a Cross-Functional Team to Implement OT Cybersecurity1460Program

- 1461 It is essential for a cross-functional cybersecurity team to share their varied domain knowledge
- and experience to evaluate and manage risk in OT. The OT cybersecurity team should consist of
- 1463 representatives of the following departments: IT staff, control engineer, control system operator,
- 1464 security subject matter expert, and enterprise risk management. For completeness, the
- 1465 information security team should also include any cybersecurity service provider.
- 1466 From a safety perspective, there are serious consequences relating to major accident hazards and
- 1467 loss of containment due to equipment failure or operator mistakes. Cybersecurity is another
- threat to the safety and reliability of industrial processes, so including the safety experts as part
- 1469 of the cybersecurity team will be beneficial in identifying potential impact areas due to cyber
- 1470 vulnerabilities. Their insight into OT design and safety considerations will also help in
- 1471 formulating cyber mitigations.

- 1472 While the control engineers will play a large role in securing OT, they will not be able to do so
- 1473 without collaboration and support from both the IT department and management. IT often has
- 1474 years of cybersecurity experience, much of which is applicable to OT. As the cultures of control
- 1475 engineering and IT are often significantly different, their integration will be essential for the
- 1476 development of a collaborative security design and operation.
- 1477 Organizations come in various sizes, structures, geographical spread, and complexities. These
- 1478 factors along with strategies related to resources and budget constraints may drive organizations
- 1479 to hire OT cybersecurity resources as employees or contractors or outsource the OT security
- 1480 operation function as a managed security service. Irrespective of the security operation and
- 1481 resource model used, the responsibility for OT cybersecurity management should be integrated
- 1482 with IT cybersecurity and corporate risk management function.
- 1483 The responsibility and accountability for implementing and managing cybersecurity functions
- 1484 typically falls under the IT and OT infrastructure organization, whereas the cybersecurity
- 1485 operational metrics and risks are reported to the risk management office. These two lines of
- 1486 reporting structure need to collaborate in terms of funding and expectations of what can be
- 1487 achieved given a funding and resource level. The risk executive function works with executive
- 1488 management to decide on the risk tolerance and residual risk.
- 1489 As part of building a cybersecurity team, the following tasks should be included:
- Establish and maintain cybersecurity roles and responsibilities for building, operating, and improving an OT cybersecurity program.
- Establish cybersecurity roles and responsibilities for third-party providers. Third-party providers include, for example, service providers, contractors, and other organizations providing OT system development and services, and security operation and management.
- Further guidance for establishing a cross-functional team can be found in Section 4 and
 Appendix D. Additional details with specific examples for establishing a cross-functional team
 are also provided in NISTIR 8183A, *Cybersecurity Framework Manufacturing Profile Low*
- 1498 Impact Level Example Implementations Guide [IR8183A].
- 14993.3.3Define OT Cybersecurity Strategy
- 1500 An organization-wide risk management strategy is foundational to developing an OT
- 1501 cybersecurity strategy.⁴ The OT cybersecurity strategy leverages the organization-wide risk
- 1502 management strategy, including organization-defined risk tolerance, threats, assumptions,
- 1503 constraints, priorities, and tradeoffs, to further tailor the strategy to apply to the OT cybersecurity
- 1504 program.

⁴ For additional information on developing an organization-wide risk management strategy, refer to NIST SP 800-37 [SP800-37r2], Prepare Step, Task P-2, Risk Management Strategy. Section 3 provides additional information on organization-level system-level task to prepare for implementing the NIST Risk Management Framework.

- 1505 The OT cybersecurity strategy:
- Refines and supplements, as necessary, guidance from the organization-wide risk
 management strategy to address OT-specific constraints and requirements
- 1508 Identifies the OT cybersecurity team and personnel
- Addresses the OT cybersecurity operation model: insource, outsource, and/or use managed
 security services
- 1511 Outlines the appropriate cybersecurity architecture for the various OT sites within the OT program
- 1513 Defines OT-specific cybersecurity training and awareness
- 1514 The OT cybersecurity strategy should help refine the organizational risk tolerance for the OT
- 1515 operation. The acceptable risk tolerance for OT drives the priorities for the OT cybersecurity
- 1516 operation. The program should address both IT and OT concerns and requirements; for example,
- 1517 IT may concern data loss or system availability as a higher priority, but OT may value system
- 1518 safety, production efficiency, and environmental damage as higher priorities.
- 1519 Further guidance for developing an OT cybersecurity strategy can be found in Section 5, Section
- 1520 6, Appendix C and Appendix D. Additional details and specific examples for establishing an OT
- 1521 cybersecurity strategy are also provided in NISTIR 8183A, *Cybersecurity Framework*
- 1522 Manufacturing Profile Low Impact Level Example Implementations Guide [IR8183A].

3.3.4 Define OT-Specific Policies and Procedures

- 1524 Policies and procedures are essential to the success of a cybersecurity program. OT-specific
- security policies and procedures should be derived from existing IT cybersecurity and plant
- 1526 operational policies and procedures where possible for consistency throughout the organization.
- 1527 As discussed earlier, organizational management is responsible for developing and
- 1528 communicating the risk tolerance level of the organization—the level of risk the organization is
- 1529 willing to accept—which allows the OT cybersecurity manager to determine the risk
- 1530 management strategy. The development of the cybersecurity policies should be based on a risk
- assessment that will set the security priorities and goals for the organization so that the risks
- 1532 posed by cyber threats are managed sufficiently. Procedures that support the policies need to be
- developed so that the policies are implemented fully and properly for the OT. Cybersecurity
- 1534 procedures should be documented, tested, and updated periodically in response to policy,
- 1535 technology, and threat changes.
- 1536 Further guidance for developing OT-specific policies and procedures can be found in Section 6.
- 1537 Additional details with examples of establishing OT-specific policies and procedures are also
- 1538 provided in NISTIR 8183A, Cybersecurity Framework Manufacturing Profile Low Impact
- 1539 *Level Example Implementations Guide* [IR8183A].

1540 **3.3.5** Establish Cybersecurity Awareness Training Program for OT Organization

1541 Organizations should ensure that all personnel, including employees, contractors, consultants,

and vendors, who interact with OT systems receive cybersecurity training that is relevant for the

1543 OT environment. This training is in addition to IT cybersecurity awareness training. This training

1544 is necessary to inform the OT personnel who interact with OT systems that their actions have the

1545 potential to impact the security and safety of the OT system and personnel. This training is used 1546 to inform personnel of basic cybersecurity principles and the steps they need to follow when

- 1546 to inform personnel of basic cybersecurity principles and the steps they need to follow when 1547 interacting with OT systems. Cybersecurity awareness training should be required for new
- 1547 Interacting with OT systems. Cybersecurity awareness training should be required for new 1548 employees at the time of hire and on regular intervals as dictated by the regulatory requirements
- 1549 and organizational policies.
- 1550 Further guidance for OT cybersecurity awareness training can be found in Section 6 and
- 1551 Appendix D. Additional details with specific examples for OT cybersecurity awareness training
- are also provided in NISTIR 8183A, Cybersecurity Framework Manufacturing Profile Low

1553 Impact Level Example Implementations Guide [IR8183A].

1554 **3.3.6 Implement a Risk Management Framework for OT**

1555 OT system risk is another risk confronting an organization (e.g., financial, safety, environmental,

- 1556 IT). In each case, managers with responsibility for the mission or business function establish and
- 1557 conduct a risk management program in coordination with senior management. NIST SP 800-39,
- 1558 Managing Information Security Risk: Organization, Mission, and Information System View
- 1559 [SP800-39] provides a framework for an enterprise-level risk management program, which is
- 1560 detailed in Section 4 of this document. OT personnel should be involved in developing the OT
- 1561 cybersecurity risk management program and communicating with senior management.
- 1562 NIST SP 800-37, Risk Management Framework for Information Systems and Organizations: A
- 1563 System Life Cycle Approach for Security and Privacy [SP800-37r2] provides a structured process

1564 for managing security and privacy risk. This includes preparing for organization-wide risk

1565 management; system categorization; control selection, implementation, and assessment; system

- and common control authorizations; and continuous monitoring.
- 1567 Applying the Risk Management Framework (RMF) to OT systems is detailed in Section 4.

1568 3.3.7 Develop Maintenance Tracking Capability

1569 Establish processes and implement tools to ensure that routine and preventative maintenance and

- 1570 repairs (both local and remote) of OT assets are performed consistent with OT organizations
- 1571 policies and procedures. The tools used for maintenance logging and tracking should be
- 1572 controlled and managed. Ensure that the processes and tools allow scheduling, authorizing,
- 1573 tracking, monitoring, and auditing maintenance and repair activities for OT assets. If the ability
- 1574 for remote maintenance is required, ensure that the remote access tool supports authentication of
- 1575 maintenance personnel, connection establishment at the beginning of maintenance activities and
- 1576 immediate teardown once the maintenance activities are performed. Also ensure that the tool can
- 1577 log the remote maintenance activities performed.

- 1578 Further guidance for OT maintenance tracking can be found in Section 6. Additional details with
- 1579 specific examples for OT maintenance tracking are also provided in NISTIR 8183A,
- 1580 Cybersecurity Framework Manufacturing Profile Low Impact Level Example Implementations
- 1581 *Guide* [IR8183A].

1582 **3.3.8 Develop Incident Response Capability**

Organizations should establish an OT cybersecurity incident response (IR) function that should 1583 1584 include planning, detection, analysis, containment, and reporting activities in the case of a 1585 cybersecurity incident. The IR function requires the establishment of several cybersecurity capabilities, including incident management, forensic analysis, vulnerability management, and 1586 response communication. As part of building the IR function, the OT cybersecurity department 1587 1588 should create an incident response plan. The purpose of the incident response capability is to 1589 determine the scope and risk of cybersecurity incidents, respond appropriately to the incident, 1590 communicate the incident with all stakeholders, and reduce the future impact. This plan applies 1591 to all OT personnel, networks, systems, and data. The IR plan guides the activities of the 1592 cybersecurity team to respond, communicate, and coordinate in the event of a cybersecurity 1593 incident. Without such a plan, the organization will find it extremely difficult to respond when a 1594 cybersecurity incident occurs. The plan includes the roles and responsibilities of personnel, the 1595 incident response workflow, incident type and severity classification, contacts of critical

1596 personnel who should be involved, contacts of external entities that may be useful in assisting

1597 with IR, information sharing policy, and internal and external communication.

1598 Further guidance for OT incident response can be found in Section 6.2.4.5 and Appendix C.

1599 Additional details with specific examples for OT incident response are also provided in NISTIR

1600 8183A, Cybersecurity Framework Manufacturing Profile – Low Impact Level Example

1601 Implementations Guide [IR8183A].

1602 **3.3.9 Develop Recovery and Restoration Capability**

1603 The organization should establish the capability to recover from cybersecurity incidents and to 1604 restore the assets and services that were impaired by the cybersecurity incident to pre-cyber-1605 incident state. This capability typically includes the following tasks:

- Define recovery objectives when recovering from disruptions. For example, the recovery capability shall prioritize human safety and environmental safety prior to restarting the OT operation that was impaired by the cybersecurity event.
- 1609 Develop a site disaster recovery plan (DRP) and business continuity plan (BCP) or both to prepare the OT organization to respond appropriately to significant disruptions in their operation due to the cybersecurity incident.
- Establish backup systems and processes to back up the relevant OT systems' state, data, configuration files, and programs at regular intervals to support recovery to a stable state.
- Establish processes for restoring relevant OT systems' state, data, configuration files, and programs from backups in a timely manner.

- Establish recovery processes and procedures that will be executed to restore OT assets and services affected by cybersecurity incidents.
- Establish communication plans to coordinate restoration activities with internal and external stakeholders and executive management team.
- 1620 Establish communication plans to manage public relations.
- Establish a lessons learned task as part of the recovery process for continuous improvement of the cybersecurity capabilities – vulnerability management, cybersecurity operation, incident response handling, and recovery handling.
- 1624 Test these plans at reasonable intervals that are appropriate for the organization.
- 1625 Further guidance for OT recovery and restoration can be found in Section 6. Additional details
- 1626 with specific examples for OT recovery and restoration are also provided in NISTIR 8183A,
- 1627 Cybersecurity Framework Manufacturing Profile Low Impact Level Example Implementations
- 1628 *Guide* [IR8183A].

1629 **3.3.10 Summary of OT Cybersecurity Program Content**

- 1630 The elements of a cybersecurity program and the various considerations for establishing such a
- 1631 program have been presented in this section. Further guidance for establishing the elements of a
- 1632 cybersecurity program can be found in the document sections listed in Table 2.
- 1633

Table 2: Sections with additional guidance on establishing a cybersecurity program

Cybersecurity Program Element	Section Number for Additional Guidance
Establish OT Cybersecurity Governance	Section 6
Build and Train a Cross-Functional Team to Implement OT Cybersecurity Program	Section 4, Appendix D
Define OT Cybersecurity Strategy	Section 5, 6, Appendix C, D
Define OT-Specific Policies and Procedures	Section 6
Establish Cybersecurity Awareness Training Program for OT Organization	Section 6, Appendix D
Implement a Risk Management Framework for OT	Section 4, 6, Appendix C, D
Develop Maintenance Tracking Capability	Section 6
Develop Incident Response Capability	Section 6, Appendix C
Develop Recovery and Restoration Capability	Section 6

1634

1635 4 Risk Management for OT Systems

1636 Organizations manage risk every day when meeting their business objectives. These risks may include financial, equipment failure, and personnel safety, to name just a few. Organizations 1637 1638 develop processes to evaluate the risks associated with their business and to decide how to manage those risks based on organizational priorities, risk tolerance, and internal and external 1639 1640 constraints. This management of risk is conducted as an interactive ongoing process as part of 1641 normal operations. Organizations that use OT systems have historically managed risk through good practices in safety and engineering. Safety assessments are well established in most sectors 1642 1643 and are often incorporated into regulatory requirements. Information security risk management is 1644 an added dimension that can be complementary. The risk management process and framework outlined in this section can be applied to managing safety, information security, and cyber supply 1645 1646 chain risk. Privacy is also a risk consideration for some OT systems. For additional guidance on 1647 privacy risk management, refer to the NIST Risk Management Framework and the Privacy 1648 Framework.

1649 A risk management process is employed throughout an organization using a three-level approach

1650 to address risk at the (i) organization level; (ii) mission/business process level; and (iii) system

1651 level (IT and OT). The risk management process is carried out seamlessly across the three levels

1652 with the overall objective of continuous improvement in the organization's risk-related activities

and effective inter-tier and intra-tier communication among all stakeholders having a shared

- 1654 interest in the mission/business success of the organization.
- 1655 This section focuses primarily on OT system considerations at the system level; however, the
- 1656 risk management activities, information, and artifacts at each level impact and inform the other
- 1657 levels. Section 6 applies the Cybersecurity Framework to OT systems, while Appendix F
- 1658 provides OT-specific recommendations to augment NIST SP 800-53, Revision 5 [SP800-53r5]
- 1659 control families. Throughout the following discussion of risk management, OT system
- 1660 considerations and the impact that these considerations have on the risk management process are
- 1661 discussed.
- 1662 For more information on multi-tiered risk management and the risk management process, refer to
- 1663 NIST SP 800-39, Managing Information Security Risk: Organization, Mission and Information
- 1664 System View [SP800-39]. NIST SP 800-37 Revision 2, Risk Management Framework for
- 1665 Information Systems and Organizations: A System Life Cycle Approach for Security and Privacy
- 1666 [SP800-37r2] provides guidelines for applying the Risk Management Framework to federal
- 1667 information systems to include conducting the activities of security categorization,⁵ security
- 1668 control selection and implementation, security control assessment, information system
- authorization,⁶ and security control monitoring. NIST SP 800-30, *Guide for Conducting Risk*
- 1670 Assessments [SP800-30r1] provides a step-by-step process for organizations on: (i) how to
- 1671 prepare for risk assessments; (ii) how to conduct risk assessments; (iii) how to communicate risk

⁵ Federal Information Processing Standard (FIPS) 199 [FIPS199] provides security categorization guidance for non-national security systems. Committee on National Security Systems (CNSS) Instruction 1253 provides similar guidance for national security systems.

⁶ Security authorization is the official management decision given by a senior organizational official to authorize operation of an information system and to explicitly accept the risk to organizational operations and assets, individuals, other organizations, and the Nation based on the implementation of an agreed-upon set of security controls.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

assessment results to key organizational personnel; and (iv) how to maintain the risk assessmentsover time.

1674 **4.1 Managing OT Security Risk**

1675 While the risk management process presented in NIST SP 800-39 applies to all types of systems,

- 1676 there are some unique aspects to consider when it comes to managing OT system security risk.
- 1677 As shown in Figure 13, the risk management process has four components: *framing risk* (i.e.,
- 1678 establishing the context for risk-based decisions), *assessing risk, responding to risk*, and
- *monitoring risk.* These activities are interdependent and often occur simultaneously within an
- 1680 organization. For example, the results of the monitoring component will feed into the framing
- 1681 component. As the environment in which organizations operate is always changing, risk
- 1682 management must be a continuous process where all components have ongoing activities. It is 1683 important to remember that these components apply to the management of any type of risk.
- important to remember that these components apply to the management of any type of risk,including cybersecurity, physical security, safety, and financial. Sections 4.1.1 through 4.1.4
- 1004 including cybersecurity, physical security, safety, and financial. Sections 4.1.1 infougn 4.1.4
- 1685 discuss the four components of the risk management process in further detail and provide OT-
- 1686 specific implementation guidance.

1687

Figure 13: Risk Management Process: Frame, Assess, Respond, Monitor

1689 Organization-wide risk management is applied at three levels, as Figure 14 depicts. Level 1 1690 addresses risk management from the organizational perspective and implements risk framing by

1691 providing context for all risk management activities within the organization. Level 2 addresses

- 1692 risk from a mission/business process perspective and is informed by the Level 1 risk context,
- 1693 decisions, and activities. Level 3 addresses risk at the system level and is informed by the Level
- 1694 1 and 2 activities and outputs.

1695

1696 Figure 14: Risk Management Levels: Organization, Mission/Business Process, and System

1697 Together, each of the risk management components (i.e., frame, assess, respond, and monitor)

1698 are applied across the risk management levels, resulting in organization-wide risk awareness and 1699 traceability and transparency of risk-based decisions.

1700 **4.1.1 Framing OT Risk**

The framing component consists of the processes for establishing the required assumptions,
constraints, risk tolerances, and risk management strategies for organizations to make consistent
risk management decisions. Specifically, risk framing supports the overall risk management
strategy by incorporating elements from the organizational governance structure, legal/regulatory
environment, and other factors to establish how the organization intends to assess, respond to,
and monitor risk to all IT and OT systems.

OT-Specific Recommendations and Guidance

For OT system operators, safety is the major consideration that directly affects decisions on how systems are engineered and operated. Safety can be defined as "freedom from conditions that can cause death, injury, occupational illness, damage to or loss of equipment or property, or damage to the environment."⁷ Based on this, human safety impacts are typically evaluated based on the degree of injury, disease, or death possible from the resulting OT system malfunction from the cyber incident, taking into consideration any previously performed safety impact assessments performed by the organization regarding the employees and the

^{7 &}lt;u>https://csrc.nist.gov/glossary/term/safety</u>

public. The importance of safety and developing/ensuring a safety culture plays a critical role in the determination of risk tolerance.

Organizations should consider incorporating an analysis of cybersecurity effects on OT systems that impact environmental and personnel safety and mitigating controls. More specifically, organizations may want to consider having a comprehensive process to systematically predict or identify the operational behavior of each safety-critical failure condition, fault condition, or human error that could lead to a hazard and potential human harm.

Organizations may also want to consider the impact of legacy systems and components on their environment. Specifically, legacy systems may be unable to adequately support cybersecurity to prevent risks from exceeding organization tolerance levels.

Another major concern for OT system operators is typically the availability of services provided by the OT system. The OT system may be part of critical infrastructure (for example, water or power systems), where there is a significant need for continuous and reliable operations. As a result, OT systems may have strict requirements for availability or recovery. Organizations should understand and plan for the level(s) of redundancy required to achieve the desired resilience levels for their operating environments and incorporate these requirements into the risk framing. This may help organizations make risk decisions that avoid unintended consequences on those who depend on the services provided. More specifically, organizations consider identifying interdependent OT systems that pose cybersecurity risks that threaten system availability.

Additionally, organizations may want to consider how an incident could propagate to a connected system and system components. An OT may be interconnected with other systems, such that failures in one system or process can easily cascade to other systems either within or outside the organization. Impact propagation could occur due to both physical and logical dependencies. Proper communication of the results of risk assessments to the operators of connected or interdependent systems and processes is one way to manage such impacts.

Logical damage to an interconnected OT could occur if the cyber incident propagated to the connected OT systems. An example could be if a virus or worm propagated to a connected OT and then impacted that system. Physical damage could also propagate to other interconnected OT. If an incident impacts the physical environment of an OT, it may also impact other related physical domains. For example, the impact could result in a physical hazard which degrades nearby physical environments. Additionally, the impact could also degrade common shared dependencies (e.g., power supply) or result in a shortage of material needed for a later stage in an industrial process.

- 1707 CISA serves to promote a cohesive effort between government and industry that will improve
- 1708 CISA's ability to anticipate, prioritize, and manage national-level OT risk. CISA assists OT
- 1709 systems' vendors and asset owners, operators, and vendors across all critical infrastructure
- 1710 sectors to identify security vulnerabilities and develop sound, proactive mitigation strategies that
- 1711 strengthen their OT systems' cybersecurity posture.

OT-Specific Recommendations and Guidance

Organizations may want to consider incorporating resources such as the NIST <u>National</u> <u>Vulnerability Database (NVD)</u> and the MITRE <u>ATT&CK for Industrial Control Systems</u> (ICS) framework [ATTACK-ICS] into their processes for assessing risks to the mission and OT systems. Additionally, the nature of OT systems requires organizations to consider additional factors that might not exist when conducting risk assessment for a traditional IT system. For example, OT will have different threat sources, vulnerabilities, and compensating controls than IT. Organizations may also need to consider that the impact of a cyber incident in an OT environment may include both physical and digital effects and, therefore, the risk assessments need to incorporate these additional effects, including:

- Impacts on safety and use of safety assessments
- Physical impact of a cyber incident on an OT, including the larger physical environment, and the effect on the process controlled
- The consequences for risk assessments of non-digital control components within an OT

1712

- 1713 During risk framing, organizations should also select appropriate risk assessment
- 1714 methodology(ies) that include OT. When evaluating the potential physical damage from a cyber
- incident, organizations with OT systems may consider: i) how a cyber incident could manipulate
- 1716 the operation to impact the physical environment; ii) what design features exist in the OT system
- 1717 to prevent or mitigate an impact; and iii) how a physical incident could emerge based on these
- 1718 conditions.

OT-Specific Recommendations and Guidance

When framing risks within an OT environment, organizations may discover that cybersecurity threats are not always as well understood or predictable as OT hazards. Organizations may consider incorporating cyber-attack and IT failure scenarios into their Process Hazard Analysis (PHA) or Failure Mode & Effects Analysis (FMEA) processes. By including risks due to cyber-attacks and cyber risk management measures in these processes, organizations may gain a better understanding of the cyber risks to the OT operation environment.

As part of risk framing, organizations may also need to consider:

- Assumptions about how risk is assessed, responded to, and monitored across the organization; and
- The risk tolerance for the organization, the level of risk that can be accepted as part of achieving strategic goals and objectives, and the priorities and trade-offs considered as part of managing risk.

In the context of OT, the potential for damage to equipment, human safety, the natural environment, and other critical infrastructures is part of these considerations. Organizations may need to consider evaluating the potential physical impacts for all parts of an OT system.

Additionally, to support risk framing, organizations may also need to determine how OT systems interact or depend on IT. These processes may require organizations to identify a common framework for evaluating impacts that incorporate OT considerations. One approach is based on NIST FIPS 199, which specifies that systems are categorized as low-impact, moderate-impact, or high-impact for the security objectives of confidentiality, integrity, and availability [FIPS199]. Another approach, based on ISA 62443-3-2 [ISA62443], provides example definitions for assisting organizations with determining a system categorization utilizing OT impacts.

1719

1720 Table 3 provides possible example categories and impact levels organizations may customize to 1721 meet their specific industry or business requirements. For example, some organizations may see

1722 an outage lasting up to one day as a High Impact instead of Moderate as shown in the table.

1723 1724

Table 3: Possible Definitions for OT Impact Levels Based on Product Produced, Industry, and Se	ecurity
Concerns	

Category	High	Moderate	Low
Outage at Multiple Sites	Significant disruption to operations at multiple sites with restoration expected to require one or more days	Operational disruptions at multiple sites, with restoration expecting to require more than one hour	Partially disrupted operations at multiple sites, with restoration to full capability requiring less than one hour
National Infrastructure and Services	Impacts multiple sectors or disrupts community services in a major way	Potential to impact sector at a level beyond the company	Little to no impact to sectors beyond the individual company; little to no impact on community
Cost (% of Revenue)	> 25%	> 5%	< 5%
Legal	Felony criminal offense or compliance violation affecting license to operate	Misdemeanor criminal offense or compliance violation resulting in fines	None
Public Confidence	Loss of brand image	Loss of customer confidence	None
People Onsite	Fatality	Loss of workday or major injury	First aid or recordable injury
People Offsite	Fatality or major community incident	Complaints or local community impact	No complaints
Environment	Citation by regional agency or long-term significant damage over large area	Citation by local agency	Small, contained release below reportable limits

1725

1726 To support the risk assessment process, organizations should also define how the likelihood of

1727 occurrence for cybersecurity events will be determined to maintain consistency when assessing

1728 risks. NIST SP 800-30 Rev. 1 [SP800-30r1] provides guidance for organizations to develop

1729 likelihood weighted risk factors. Organizations should consider weighting risk factors based on

1730 an analysis of the probability that a given threat is capable of exploiting a given vulnerability (or

- set of vulnerabilities); the threat event will be initiated; and the threat event will result in adverseimpacts.
- 1733 For adversarial threats, an assessment of likelihood of occurrence is typically based on adversary
- intent, capability, and targeting. For other than adversarial threat events, the likelihood of
- 1735 occurrence is estimated using historical evidence, empirical data, or other factors. In some
- 1736 situations, organizations may find that there is minimal organizational historical data. In these
- 1737 cases, organizations may want to consider extending their analysis to consider industry-specific
- 1738 data that may describe cybersecurity events reported for similar organizations.
- 1739 The likelihood of threat occurrence can also be based on the state of the organization (including
- 1740 for example, its core mission/business processes, enterprise architecture, information security
- architecture, information systems, and environments in which those systems operate)—taking
- 1742 into consideration predisposing conditions and the presence and effectiveness of deployed
- 1743 security controls to protect against unauthorized/undesirable behavior, detect and limit damage,
- and/or other resiliency factors for the OT capabilities.

OT-Specific Recommendations and Guidance

Organizations establishing definitions for event likelihood may want to review Appendix G of SP 800-30 Rev. 1 for more detailed guidance and suggestions. Based on this guidance, organizations should consider defining five levels of likelihood (from Very Low to Very High) based on both adversarial (intentional threat actors) and non-adversarial (errors, accidents, acts of nature, etc.) events. Additionally, organizations will want to establish definitions for the likelihood an event will result in an adverse impact. Using these two factors, organizations can establish a heat map like the one depicted in Table 4 to determine the likelihood factor for supporting the risk analysis.

1745

1746

Table 4: Event Likelihood Evaluation

Likelihood of Threat Event	Likelihood Threat Events Result in Adverse Impacts				
Initiation or Occurrence	Very Low	Low	Moderate	High	Very High
Very High	Low	Moderate	High	Very High	Very High
High	Low	Moderate	Moderate	High	Very High
Moderate	Low	Low	Moderate	Moderate	High
Low	Very Low	Low	Low	Moderate	Moderate
Very Low	Very Low	Very Low	Low	Low	Low

1747

1748 **4.1.2 Assessing Risk in the OT Environment**

- 1749 Leveraging the outputs of framing risk, such as acceptable risk assessment methodologies, risk
- 1750 management strategy, and risk tolerance, risk assessments are conducted to facilitate efforts to
- 1751 identify, estimate, and prioritize risks to operations, assets, individuals, and other organizations.
- 1752 Risk assessments occur at all risk management levels (i.e., organization, mission/business
- 1753 function, and system) and can be used to inform risk assessments at other levels. Regardless of 1754 which risk management level the risk assessment is conducted at, assessing risk requires
- which risk management level the risk assessment is conducted at, assessing risk requires
 identifying threats and vulnerabilities, the harm that such threats and vulnerabilities may cause,
- and the likelihood that adverse events arising from those threats and vulnerabilities may occur.
- 1757 When the organization conducts a risk assessment that includes OT systems, there may be
- additional considerations that do not exist when doing a risk assessment of traditional IT
- 1759 systems. Because the impact of a cyber incident in an OT may include both physical and digital
- 1760 effects, risk assessments need to incorporate those potential effects.

OT-Specific Recommendations and Guidance

Organizations need to consider that risk assessments are typically point-in-time reports. As a result, organizations should ensure that they are updated to remain current and that the security level remains adequate.

Organizations may want to review the information provided by CISA's Alerts and Advisories, NIST NVD, and MITRE ATT&CK for ICS framework to identify common vulnerability areas for OT environments, such as:

- Poor coding practices, network designs, or device configurations
- Vulnerable network services and protocols
- Weak authentication
- Excessive privileges
- Information disclosure

1761

OT-Specific Recommendations and Guidance

The physical operating environment is another aspect that organizations should consider when working with an OT system. OT systems often have specific environmental requirements (e.g., a manufacturing process may require a precise temperature), or they may be tied to their physical environment for operations. Organizations may want to consider incorporating these requirements and constraints in the framing component so that the risks arising from these constraints are identified and considered. Additionally, organizations may want to consider:

 Identifying the physical assets and security controls that directly relate to safety, human life, and maintaining continuity of operations of the OT system

- Identifying the cybersecurity risks associated with physical assets that could threaten OT system functionality
- Ensure that physical security personnel understand the relative risks and physical security countermeasures associated with the OT system environments they protect
- Ensure that physical security personnel are aware of which areas of an OT system production environment house data acquisition and operate in sensitive spaces
- Mitigate business continuity risk by specifying immediate response plans if physical safety is jeopardized

1762 Risk assessments also require reviewing digital and non-digital mechanisms implemented to minimize adverse event impacts. OT systems often incorporate non-digital mechanisms to 1763 1764 provide fault tolerance and prevent the OT from acting outside of acceptable parameters. 1765 Therefore, these non-digital mechanisms may help reduce any negative impact that a digital incident on the OT might have and are incorporated into the risk assessment process. For 1766 1767 example, OT often have non-digital control mechanisms that can prevent the OT from operating 1768 outside of a safe boundary, and thereby limit the impact of an attack (e.g., a mechanical relief pressure valve). In addition, analog mechanisms (e.g., meters, alarms) can be used to observe the 1769 physical system state to provide operators with reliable data if digital readings are unavailable or 1770 1771 corrupted. Table 5 categorizes non-digital control mechanisms that could reduce the impact of an 1772 OT incident.

1773

Table 5: Categories of Non-Digital OT Control Components

Control Type	Description	
Analog Displays or Alarms	Non-digital mechanisms that measure and display the state of the physical system (e.g., temperature, pressure, voltage, current) and can provide the operator with accurate information in situations when digital displays are unavailable or corrupted. The information may be provided to the operator on some non-digital display (e.g., thermometers, pressure gauges) and through audible alarms.	
Manual Control Mechanisms	Manual control mechanisms (e.g., manual valve controls, physical breaker switches) provide operators with the ability to manually control an actuator without relying on the digital OT system. This ensures that an actuator can be controlled even if the OT system is unavailable or compromised.	
Analog Control Systems	Analog control systems use non-digital sensors and actuators to monitor and control a physical process. These may be able to prevent the physical process from entering an undesired state in situations when the digital OT system is unavailable or corrupted. Analog controls include devices such as regulators, governors, and electromechanical relays. An example is a device that is designed to open during emergency or abnormal conditions to prevent rise of internal fluid pressure in excess of a specified value, thus bringing the process to a safer state. The device also may be designed to prevent excessive internal vacuum. The device may be a pressure relief valve, a non-reclosing pressure relief device (e.g., rupture disc), or a vacuum relief valve.	

1774

OT-Specific Recommendations and Guidance

Organizations should consider the potential impact that a cyber incident may have on OT by analyzing all digital and non-digital control mechanisms and the extent to which they can mitigate potential negative impacts to the OT. There are multiple considerations when considering the possible mitigation effects of digital and non-digital control mechanisms, such as how non-digital control mechanisms may require additional time and human involvement to perform necessary monitoring or control functions. For example, such mechanisms may require operators to travel to a remote site to perform certain control functions. Such mechanisms may also depend on human response times, which may be slower than automated controls.

1775

1776 Additionally, organizations may need to consider privacy with their risk assessment. Privacy risk

- 1777 assessments sometime require a different approach, so organizations may want to consider
- 1778 utilizing the <u>NIST Privacy Risk Assessment Methodology (PRAM)</u>—a tool that applies the risk
- 1779 model from NISTIR 8062 [IR8062] and helps organizations analyze, assess, and prioritize
- 1780 privacy risks to determine how to respond and select appropriate solutions.

1781 **4.1.3 Responding to Risk in an OT Environment**

1782 The *risk response component* provides an organization-wide response to risk in accordance with

1783 the risk framing component (e.g., identify possible courses of actions to address risk, evaluate

1784 those possibilities considering the organization's risk tolerance and other considerations

determined during framing, and choose the best alternative for the organization). The response

- 1786 component includes the implementation of the chosen course of action to address the identified
- 1787 risk: *acceptance, avoidance, mitigation, sharing, transfer,* or any combination of those options.⁸

OT-Specific Recommendations and Guidance

For an OT system, available risk responses may be constrained by system requirements, potential adverse impact on operations, or even regulatory compliance regimes. An example of risk sharing is when utilities enter into agreements to "loan" line workers in an emergency, which reduces the duration of the effect of an incident to acceptable levels.

1788

17894.1.4Monitoring Risk in an OT Environment

1790 *Monitoring risk* is the fourth component of the risk management activities. Organizations

1791 monitor risk on an ongoing basis, including the implementation of chosen risk management

1792 strategies; changes in the environment that may affect the risk calculation; and the effectiveness

and efficiency of risk reduction activities. The activities in the monitoring component impact all

1794 the other components.

⁸ For additional information on these options, refer to NIST SP 800-39 [SP800-39].

OT-Specific Recommendations and Guidance

Many OT system monitoring capabilities leverage passive monitoring techniques to detect system changes; however, this may not always capture all modifications to the system. Modern monitoring platforms that leverage native protocol communications to access more system information may improve awareness, but the limitations of these OT systems must be understood. Often OT systems are implemented with an undefined frequency for monitoring cyber activities. Users should set a frequency in accordance with the respective risk profile.

Threat information as it relates to the OT environment is evolving, and the availability and accuracy of this threat information is early in its development. By their nature, threats may be difficult to accurately predict even with historical data. Organizations should categorize threats based on the likelihood of occurrence and their potential consequences. For example, the threat of an internet-connected system being scanned would have a high likelihood and a low-severity consequence. Another example might be the threat of a nation-state actor disrupting a supply chain. This threat may have low likelihood and high-severity consequences to the organization.

Since security countermeasures are typically developed for IT environments, organizations should consider how deploying security technologies into OT environments might negatively impact operations or safety.

1795 **4.2** Special Areas for Consideration

1796 4.2.1 Supply Chain Risk Management

Cybersecurity risks can arise from products or services acquired to support OT needs. These
risks can be introduced anywhere in the supply chain and at any stage across the life cycle. These
risks—whether malicious, natural, or unintentional—have the potential to compromise the
availability and integrity of critical OT systems and components, and the availability, integrity,
and confidentiality of the data utilized by the OT, causing harms ranging from minor disruption

1802 to life-safety impacts.

1803 With few exceptions, organizations with responsibility for OT rely upon suppliers and other 1804 third-party providers and their extended supply chains for a range of needs. These supply-side organizations perform critical roles and functions, to include manufacturing and provisioning 1805 1806 technology products, providing software upgrades and patches, performing integration services, 1807 or otherwise supporting day-to-day operations and maintenance of OT systems, components, and 1808 operational environments. For this reason, it is necessary and important that OT organizations 1809 should seek to understand and mitigate the supply chain-related risk that can be inherited from 1810 these supply-side organizations and the products and services they provide.

- 1811 Identifying, assessing, and effectively responding to cybersecurity risks in supply chains is best
- accomplished by incorporating cybersecurity supply chain risk management (C-SCRM)
- 1813 considerations into organizational policies, plans, and practices. This includes extending
- 1814 cybersecurity expectations and requirements to vendors and gaining better understanding,
- 1815 visibility, and control over the supply chains that are associated with acquired products and
- 1816 services. Vetting suppliers and service providers should be done to ascertain their capabilities,
- 1817 trustworthiness, the adequacy of their internal security practices, and the effectiveness of
- 1818 safeguards, and to understand their supply chain relationships and any risks that may be
- 1819 associated with those relationships and dependencies. Requirements for and evaluation of
- 1820 products and discrete components should go beyond an assessment of whether functional and
- 1821 technical requirements are satisfied and address applicable C-SCRM factors such as, but not 1822 limited to, a product's provenance, pedigree, and composition, and whether the product is taint-
- 1823 free and authentic. Additionally, special consideration should be given to how difficult it may be
- 1824 to attain original replacement parts or updates over the life of the product and how diverse the
- 1825 sources of supply are and may be in the future.
- 1826 OT organizations should familiarize themselves with NIST SP 800-161, Supply Chain Risk
- 1827 Management Practices for Federal Information Systems and Organizations [SP800-161] and
- 1828 begin, or continue, implementing the key practices, C-SCRM security controls, and C-SCRM
- 1829 risk management process activities described in the publication. For organizations at the early
- 1830 stage of establishing a C-SCRM program, there is extensive guidance about how to go about
- 1831 doing this in a phased approach that begins with putting the foundational elements in place, then
- 1832 matures and expands upon this foundation over time to ensure sustained effectiveness and the
- 1833 ability to enhance program capabilities. There is also guidance about conducting supply chain
- risk assessments, incorporating C-SCRM into procurement requirements, the importance of an 1834
- 1835 integrated and inter-disciplinary risk management approach, and supplemental C-SCRM security
- 1836 control guidance, as well as templates that organizations can leverage.

1837 4.2.2 Safety Systems

- 1838 The culture of safety and safety assessments is well established within much of the OT user
- 1839 community. Information security risk assessments should be complementary to such 1840 assessments, though they may use different approaches and cover different areas. Safety
- 1841
- assessments are concerned primarily with the physical world. Information security risk 1842 assessments primarily look at the digital world. However, in an OT environment, the physical
- 1843 and the digital are intertwined, and significant overlap may occur.
- 1844 It is important that organizations consider all aspects of risk management for safety (e.g., risk
- 1845 framing, risk tolerances), as well as the safety assessment results, when carrying out risk
- 1846 assessments for information security. The personnel responsible for the information security risk
- 1847 assessment must be able to identify and communicate identified risks that could have safety
- 1848 implications. Conversely, the personnel charged with safety assessments must be familiar with
- 1849 the potential physical impacts and their likelihood developed by the information security risk
- 1850 assessment process.
- 1851 Safety systems may also reduce the impact of a cyber incident to the OT. Safety systems are
- 1852 often deployed to perform specific monitoring and control functions to ensure the safety of
- 1853 people, the environment, process, and assets. While these systems are traditionally implemented
- to be fully redundant and independent from the primary OT, some architectures combine control 1854
- 1855 and safety functions, components, or networks. Combining control and safety could allow a
- 1856 sophisticated attacker access to both control and safety systems if the OT were compromised.
- 1857 Ensure adequate separation of components consistent with the risk of compromise. Evaluate the

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

1858 impact of the implemented security controls on the safety system to determine if they negatively1859 impact the system.

1860 **4.3** Applying the Risk Management Framework for OT Systems

1861 The <u>NIST Risk Management Framework (RMF)</u> applies the risk management process and

1862 concepts (framing risk, assessing risk, responding to risk, and monitoring risk) to systems and

organizations. The following subsections describe the process of applying the RMF to OT and
 include a brief description of each step and task, the intended outcome of each task, task

- 1865 mappings to other standards and guidelines applicable to OT (e.g., the Cybersecurity Framework
- and IEC 62443), and OT-specific implementation guidance. Some tasks are optional, and not all
- 1867 tasks include OT-specific considerations or guidance.
- 1868 The RMF steps in Figure 15, while shown sequentially, can be implemented in a different order
- 1869 to be consistent with established management and system development life cycle processes.

1871

Figure 15: Risk Management Framework Steps

1872 **4.3.1** Prepare

1873 The purpose of the Prepare step is to carry out essential activities at the organization, mission 1874 and business process, and system levels of the organization to help prepare the organization to

- 1875 manage its security and privacy risks using the RMF. The Prepare step leverages activities that
- 1876 are already being conducted within cybersecurity programs to emphasize the importance of

- 1877 having organization-wide governance and resources in place to support risk management. See
- 1878 Table 6 for details on applying the Prepare step to OT.
- 1879

			_	
l able 6:	Applying	the RMF	Prepare	step to OT

Tasks	Outcomes	OT-Specific Guidance		
Organizational and Mission/Business Process Levels				
TASK P-1 RISK MANAGEMENT ROLES	Individuals are identified and assigned key roles for executing the RMF. [<i>Cybersecurity Framework</i> : ID.AM-6 ; ID.GV-2] [IEC 62443-2-1: ORG 1.3]	Establish and maintain personnel cybersecurity roles and responsibilities for both IT and OT systems. Include cybersecurity roles and responsibilities for third-party providers. Examples of OT personnel include Process/Plant Manager, Process Control Engineer, Operator, Functional Safety Engineer, Maintenance Personnel, and Process Safety Manager.		
TASK P-2 RISK MANAGEMENT STRATEGY	A risk management strategy for the organization that includes a determination and expression of organizational risk tolerance is established. [<i>Cybersecurity Framework</i> : ID.RM; ID.SC] [IEC 62443-2-1: ORG 2.1]	The risk management strategy encompasses the whole organization. Consider the unique regulatory requirements as it relates to organizations with OT systems.		
TASK P-3 RISK ASSESSMENT— ORGANIZATION	An organization-wide risk assessment is completed, or an existing risk assessment is updated. [<i>Cybersecurity Framework</i> : ID.RA; ID.SC-2] [IEC 62443-2-1: Event1.9; ORG 1.3; 2.1]			
TASK P-4 ORGANIZATIONALLY-TAILORED CONTROL BASELINES AND CYBERSECURITY FRAMEWORK PROFILES (OPTIONAL)	Organizationally tailored control baselines and/or Cybersecurity Framework profiles are established and made available. [<i>Cybersecurity Framework</i> : Profile]	An organizationally tailored control baseline for OT systems can be developed to address mission/business needs, unique operating environments, and/or other requirements.		
TASK P-5 COMMON CONTROL IDENTIFICATION	Common controls that are available for inheritance by organizational systems are identified, documented, and published.	Common controls available for inheritance may adversely impact OT system operation; consider if common controls can be applied to OT systems effectively, safely, and without adverse impacts on OT system operation.		
TASK P-6 IMPACT-LEVEL PRIORITIZATION (OPTIONAL)	A prioritization of organizational systems with the same impact level is conducted. [<i>Cybersecurity Framework</i> : ID.AM-5] [IEC 62443-2-1: DATA 1.1]	Criteria such as safety or critical service delivery can be used in the impact-level prioritization.		

Tasks	Outcomes	OT-Specific Guidance
TASK P-7 CONTINUOUS MONITORING	An organization-wide strategy for monitoring control effectiveness is developed and implemented. [<i>Cybersecurity Framework</i> : DE.CM; ID.SC-4]	
STRATEGY—ORGANIZATION	[IEC 62443-2-1: EVENT 1.1; COMP 2.2 USER 1.06; EVENT 1.1.; ORG2.2	
	System-Level	
TASK P-8 MISSION OR BUSINESS FOCUS	Missions, business functions, and mission/business processes that the system is intended to support are identified. [<i>Cybersecurity Framework</i> : Profile ; Implementation Tiers ; ID.BE]	When mapping OT and IT processes, the information flows and protocols should also be documented.
	[IEC 62443-2-1: ORG1.6; AVAIL 1.2; AVAIL 1.1]	
TASK P-9	The stakeholders having an interest in the system are identified.	Example OT personnel include Process/Plant Manager, Process Control Engineer, Operator,
SYSTEM STAKEHOLDERS	[Cybersecurity Framework: ID.AM; ID.BE]	Functional Safety Engineer, and Process Safety Manager.
TASK P-10 ASSET IDENTIFICATION	Stakeholder assets are identified and prioritized. [<i>Cybersecurity Framework</i> : ID.AM]	OT system components can include PLCs, sensors, actuators, robots, machine tools, firmware, network switches, routers, power supplies, and other networked components or devices.
TASK P-11 AUTHORIZATION BOUNDARY	The authorization boundary (i.e., system) is determined.	
TASK P-12	The types of information processed, stored, and transmitted by the system are identified.	
INFORMATION TYPES	[Cybersecurity Framework: ID.AM-5]	
TASK P-13	All stages of the information life cycle are identified and understood for each information type processed, stored, or transmitted by the system.	
INFORMATION LIFE CYCLE	[Cybersecurity Framework: ID.AM-3; ID.AM-4]	
TASK P-14	A system-level risk assessment is completed, or an existing risk assessment is updated.	Risk assessments, including performance/load testing and penetration testing, are conducted on the OT systems with care to ensure
RISK ASSESSMENT—SYSTEM	[Cybersecurity Framework: ID.RA; ID.SC-2]	that OT operations are not adversely impacted by the testing process.
TASK P-15 REQUIREMENTS DEFINITION	Security and privacy requirements are defined and prioritized.	

Tasks	Outcomes	OT-Specific Guidance	
	[Cybersecurity Framework: ID.GV; PR.IP]		
TASK P-16 ENTERPRISE ARCHITECTURE	The placement of the system within the enterprise architecture is determined.	Group OT components by function or sensitivity level to optimize cybersecurity control implementation.	
TASK P-17	Security and privacy requirements are allocated to the system and to the environment in which the system operates.	As security and privacy requirements are allocated to the OT system, considerations such as impact on performance and safety are	
REQUIREMENTS ALLOCATION	[Cybersecurity Framework: ID.GV]	considered.	
TASK P-18	The system is registered for purposes of management, accountability, coordination, and oversight.		
SYSTEM REGISTRATION	[Cybersecurity Framework: ID.GV]		

1881 **4.3.2 Categorize**

- In the Categorize step, the potential adverse impact of the loss of confidentiality, integrity, and availability of the information and system is determined. For each information type and system under consideration, the three security objectives—confidentiality, integrity, and availability are associated with one of three levels of potential impact should there be a breach of security. It is important to remember that for an OT, availability is generally the greatest concern. The standards and guidance for this categorization process can be found in FIPS 199 [FIPS199] and NIST SP 800-60 [SP800-60v1r1][SP800-60v2r1], respectively.
- 1889 The following OT example is taken from FIPS 199:

OT-Specific Recommendations and Guidance

A power plant contains a SCADA system controlling the distribution of electric power for a large military installation. The SCADA system contains both real-time sensor data and routine administrative information. The management at the power plant determines that: (i) for the sensor data being acquired by the SCADA system, there is no potential impact from a loss of confidentiality, a high potential impact from a loss of integrity, and a high potential impact from a loss of availability; and (ii) for the administrative information being processed by the system, there is a low potential impact from a loss of confidentiality. The resulting security categories, SC, of these information types are expressed as:

SC sensor data = {(confidentiality, NA), (integrity, HIGH), (availability, HIGH)}, and SC administrative information = {(confidentiality, LOW), (integrity, LOW), (availability, LOW)}.

The resulting security category of the system is initially expressed as:

SC SCADA system = {(confidentiality, LOW), (integrity, HIGH), (availability, HIGH)}

representing the high-water mark or maximum potential impact values for each security objective from the information types resident on the SCADA system. The management at the power plant chooses to increase the potential impact from a loss of confidentiality from low to moderate, reflecting a more realistic view of the potential impact on the system should there be a security breach due to the unauthorized disclosure of system-level information or processing functions. The final security category of the system is expressed as:

SC SCADA system = {(**confidentiality**, MODERATE), (**integrity**, HIGH), (**availability**, HIGH)}

1890

1891 Table 7 provides details on applying the RMF Categorize step to OT.

1892

Table 7: Applying the RMF Categorize step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK C-1	The characteristics of the system are described and documented.	
SYSTEM DESCRIPTION	[Cybersecurity Framework: Profile]	
TASK C-2 SECURITY CATEGORIZATION	A security categorization of the system, including the information processed by the system represented by the organization-identified information types, is completed. [<i>Cybersecurity Framework</i> : ID.AM-1 ; ID.AM-2 ; ID.AM-3 ; ID.AM-4 ; ID.AM-5] Security categorization results are documented in the security, privacy, and SCRM plans. [<i>Cybersecurity Framework</i> : Profile] Security categorization results are consistent with the enterprise architecture and commitment to protecting organizational missions, business functions, and mission/business processes. [<i>Cybersecurity Framework</i> : Profile] Security categorization results reflect the organization's risk management strategy.	OT and IT systems may have different categorization criteria.
TASK C-3		
SECURITY CATEGORIZATION REVIEW AND APPROVAL	The security categorization results are reviewed, and the categorization decision is approved by senior leaders in the organization.	

1893

1894 **4.3.3 Select**

1895 The purpose of the Select step is to determine the initial selection of controls to protect the

1896 system commensurate with risk. The control baselines are the starting point for the control

1897 selection process and are chosen based on the security category and associated impact level of

1898 systems determined in the Categorize step. NIST SP 800-53B [SP800-53B] identifies the

1899 recommended control baselines for federal systems and information. To address the need for

1900 developing community-wide and specialized sets of controls for systems and organizations, the

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 1901 concept of overlays is introduced. An *overlay* is a fully specified set of controls, control
- 1902 enhancements, and supplemental guidance derived from the application of tailoring guidance to
- 1903 security control baselines described in NIST SP 800-53B, Appendix C.

In general, overlays are intended to reduce the need for ad hoc tailoring of baselines by organizations through the selection of a set of controls and control enhancements that more closely correspond to common circumstances, situations, and/or conditions. Appendix F of this publication includes an OT-specific overlay of applicable NIST SP 800-53 controls that provides tailored baselines for low-impact, moderate-impact, and high-impact OT. These tailored

- baselines can be utilized as starting specifications and recommendations that can be applied to
- 1910 specific OT by responsible personnel.
- 1911 OT owners can tailor the overlay from Appendix F when it is not possible or feasible to
- 1912 implement specific controls. The use of overlays does not in any way preclude organizations
- 1913 from performing further tailoring (i.e., overlays can also be subject to tailoring) to reflect
- 1914 organization-specific needs, assumptions, or constraints. However, all tailoring activity should,
- as its primary goal, focus on meeting the intent of the original controls whenever possible or
- 1916 feasible. For example, in situations where the OT cannot support, or the organization determines
- 1917 it is not advisable to implement particular controls or control enhancements in an OT (e.g.,
- 1918 performance, safety, or reliability are adversely impacted), the organization should provide a
- complete and convincing rationale for how the selected compensating controls provide an
 equivalent security capability or level of protection for the OT and why the related baseline
- 1921 controls could not be employed. If the OT cannot support the use of automated mechanisms, the
- 1922 organization employs non-automated mechanisms or procedures as compensating controls in
- accordance with the general tailoring guidance in Section 3.3 of NIST SP 800-53. Compensating
- 1924 controls are not exceptions or waivers to the baseline controls; rather, they are alternative
- safeguards and countermeasures employed within the OT that accomplish the intent of the
- original controls that could not be effectively employed. Organizational decisions on the use of
- 1927 compensating controls are documented in the security plan for the OT.
- 1928 Table 8 provides additional details on applying the RMF Select step to OT.
- 1929

Table 8: Applying the RMF Select step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK S-1 CONTROL SELECTION	Control baselines necessary to protect the system commensurate with risk are selected. [<i>Cybersecurity Framework</i> : Profile]	OT systems can leverage the OT control baselines identified in Appendix F as a starting point or may leverage an organization-defined control selection approach.
TASK S-2 CONTROL TAILORING	Controls are tailored, producing tailored control baselines. [<i>Cybersecurity Framework</i> : Profile]	Due to operational or technical constraints, it may not be feasible to implement certain controls. Organizations should consider the use of compensating controls to manage risk to an acceptable level.

Outcomes	OT-Specific Guidance
Controls are assigned as system-specific, hybrid, or common controls.	
Controls are allocated to the specific system elements (i.e., machine, physical, or human elements).	
[Cybersecurity Framework: Profile; PR.IP]	
Controls and associated tailoring actions are documented in security and privacy plans or equivalent documents.	
[Cybersecurity Framework: Profile]	
A continuous monitoring strategy for the system that reflects the organizational risk management strategy is developed.	An OT-specific continuous monitoring strategy to measure the control effectiveness may be necessary due to
[Cybersecurity Framework: ID.GV; DE.CM]	unique operational, environmental, and/or availability constraints.
Security and privacy plans reflecting the selection of controls necessary to protect the system and the environment of operation commensurate with risk are reviewed and approved by the authorizing official.	Review any potential impact to the OT system's operational effectiveness and safety.
	Controls are assigned as system-specific, hybrid, or common controls. Controls are allocated to the specific system elements (i.e., machine, physical, or human elements). [<i>Cybersecurity Framework</i> : Profile ; PR.IP] Controls and associated tailoring actions are documented in security and privacy plans or equivalent documents. [<i>Cybersecurity Framework</i> : Profile] A continuous monitoring strategy for the system that reflects the organizational risk management strategy is developed. [<i>Cybersecurity Framework</i> : ID.GV ; DE.CM] Security and privacy plans reflecting the selection of controls necessary to protect the system and the environment of operation commensurate with risk are reviewed and

1931 **4.3.4 Implement**

1932 The Implement step involves the implementation of controls in new or legacy systems. The

1933 control selection process described in this section can be applied to OT from two perspectives:1934 new development and legacy.

1935 For new development systems, the control selection process is applied from a requirements

1936 definition perspective since the systems do not yet exist and organizations are conducting initial

1937 security categorizations. The controls included in the security plans for the systems serve as a

1938 security specification and are expected to be incorporated into the systems during the

1939 development and implementation phases of the system development life cycle.

1940 In contrast, for legacy systems, the security control selection process is applied from a gap

1941 analysis perspective when organizations are anticipating significant changes to the systems (e.g.,

1942 during major upgrades, modifications, or outsourcing). Since the systems already exist,

1943 organizations likely have completed the security categorization and security control selection

1944 processes, resulting in the establishment of previously agreed-upon controls in the respective

1945 security plans and the implementation of those controls within the systems.

1946 Table 9 provides additional details on applying the RMF Implement step to OT.

Table 9: Applying the RMF Implement step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK I-1 Control IMPLEMENTATION	Controls specified in the security and privacy plans are implemented. [<i>Cybersecurity Framework</i> : PR.IP-1] Systems security and privacy engineering methodologies are used to implement the controls in the system security and privacy plans. [<i>Cybersecurity Framework: PR.IP-2</i>]	For existing (operational) OT systems, schedule control implementation during the OT system maintenance window. A complete verification is recommended to ensure the controls are not affecting or degrading the performance and safety of the OT system. In some cases, it may not be feasible to immediately mitigate the risk due to scheduling issues; however, interim compensating controls can be leveraged.
TASK I-2 UPDATE CONTROL IMPLEMENTATION INFORMATION	Changes to the planned implementation of controls are documented. [<i>Cybersecurity Framework:</i> PR.IP-1] The security and privacy plans are updated based on information obtained during the implementation of the controls. [<i>Cybersecurity Framework:</i> Profile]	

1948

1949 **4.3.5 Assess**

- 1950 The Assess step of the RMF determines the extent to which the controls in the system are
- 1951 effective in their application and producing the desired results. NIST SP 800-53A [SP800-53A]
- 1952 provides guidance for assessing selected controls from NIST SP 800-53 to ensure that they are
- 1953 implemented correctly, operating as intended, and producing the desired outcome with respect to
- 1954 meeting the security requirements of the system. Table 10 provides additional details on applying
- 1955 the Assess step to OT.

1956

Table 10: Applying the RMF Assess step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK A-1	An assessor or assessment team is selected to conduct the control assessments.	Include OT system personnel and
ASSESSOR SELECTION	The appropriate level of independence is achieved for the assessor or assessment team selected.	operator in the assessment team.
	Documentation needed to conduct the assessments is provided to the assessor or assessment team.	
TASK A-2	Security and privacy assessment plans are developed and documented.	
ASSESSMENT PLAN	Security and privacy assessment plans are reviewed and approved to establish the expectations for the control assessments and the level of effort required.	
TASK A-3	Control assessments are conducted in accordance with the security and privacy assessment plans.	Consider the use of tabletop exercises or simulations to reduce the impact to
CONTROL ASSESSMENTS	Opportunities to reuse assessment results from previous assessments to make the risk management process timely and cost-effective are considered.	production OT. Use automation to conduct assessments with care to ensure that the OT system is not

Tasks	Outcomes	OT-Specific Guidance
	Use of automation to conduct control assessments is maximized to increase speed, effectiveness, and efficiency of assessments.	adversely impacted by the testing process.
TASK A-4 ASSESSMENT REPORTS	Security and privacy assessment reports that provide findings and recommendations are completed.	
TASK A-5 REMEDIATION ACTIONS	Remediation actions to address deficiencies in the controls implemented in the system and environment of operation are taken. Security and privacy plans are updated to reflect control implementation changes made based on the assessments and subsequent remediation actions. [<i>Cybersecurity Framework</i> : Profile]	Ensure remediation actions do not have a negative impact on the efficiency and safe operations of OT. Consider use of compensating controls as one of the remediation actions.
TASK A-6 Plan of action and Milestones	A plan of action and milestones detailing remediation plans for unacceptable risks identified in security and privacy assessment reports is developed. [<i>Cybersecurity Framework</i> : ID.RA-6]	Consider the unique time constraints of the OT system in the plan of action and milestones, taking into account planned schedule maintenance or shutdown(s) of the OT system.

1958 **4.3.6 Authorize**

1959 The Authorize step results in a management decision to authorize the operation of a system and 1960 to explicitly accept the risk to operations, assets, and individuals based on the implementation of

an agreed-upon set of controls. A new system is not placed into production/operation until the

system is authorized. Table 11 provides additional details on applying the Authorize step to OT.

1963

Table 11: Applying the RMF Authorize step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK R-1 AUTHORIZATION PACKAGE	An authorization package is developed for submission to the authorizing official.	
TASK R-2 RISK ANALYSIS AND DETERMINATION	A risk determination by the authorizing official that reflects the risk management strategy, including risk tolerance, is rendered.	
TASK R-3 RISK RESPONSE	Risk responses for determined risks are provided. [<i>Cybersecurity Framework</i> : ID.RA-6]	Develop and implement a comprehensive strategy to manage risk to the OT system that includes the identification and prioritization of risk responses.
TASK R-4 AUTHORIZATION DECISION	The authorization for the system or the common controls is approved or denied.	Organizations may need to determine remediation strategies when system risks drift out of acceptable range considering OT specific dependencies such as the inability to take a system or component offline until remediated.
TASK R-5 AUTHORIZATION REPORTING	Authorization decisions, significant vulnerabilities, and risks are reported to organizational officials.	Ensure the decisions, vulnerabilities, and risks are reported to OT and operations personnel.

1964

1965 **4.3.7 Monitor**

The Monitor step continuously tracks changes to the system that may affect controls and assesses
control effectiveness. NIST SP 800-37 Rev. 2 provides guidance on cybersecurity continuous
monitoring [SP800-37r2]. Table 12 provides additional details on applying the Monitor step to
OT.

1970

Table 12: Applying the RMF Monitor step to OT

Tasks	Outcomes	OT-Specific Guidance
TASK M-1 SYSTEM AND ENVIRONMENT CHANGES	The system and environment of operation are monitored in accordance with the continuous monitoring strategy. [<i>Cybersecurity Framework</i> : DE.CM ; ID.GV]	Leverage the OT-specific continuous monitoring strategy that takes performance impacts and Safety Systems as critical considerations.
TASK M-2 ONGOING ASSESSMENTS	Ongoing assessments of control effectiveness are conducted in accordance with the continuous monitoring strategy. [<i>Cybersecurity Framework</i> : ID.SC-4]	Conduct ongoing assessments that consider system performance and safety impacts.
TASK M-3 ONGOING RISK RESPONSE	The output of continuous monitoring activities is analyzed and responded to appropriately. [Cybersecurity Framework: RS.AN]	Correlate detected event information with risk assessment outcomes to achieve perspective on incident impact on the OT system.
TASK M-4 AUTHORIZATION PACKAGE UPDATES	Risk management documents are updated based on continuous monitoring activities. [<i>Cybersecurity Framework</i> : RS.IM]	
TASK M-5 SECURITY AND PRIVACY REPORTING	A process is in place to report the security and privacy posture to the authorizing official and other senior leaders and executives.	
TASK M-6 ONGOING AUTHORIZATION	Authorizing officials conduct ongoing authorizations using the results of continuous monitoring activities and communicate changes in risk determination and acceptance decisions.	
TASK M-7 system disposal	A system disposal strategy is developed and implemented, as needed.	Planned obsolescence found in IT components may not extend to OT components. Consider the maintenance and repair of OT components that are required to be sustained beyond IT component availability.

1971

1972 5 OT Cybersecurity Architecture

1973 When designing a security architecture for an OT environment, it is generally recommended to

1974 separate the OT network(s) from the corporate network. The nature of network traffic on these

1975 two networks is different: Internet access, email, and remote access will typically be permitted

1976 on the corporate network and not allowed on the OT networks. There may also be differences in 1977 the degree of rigor associated with corporate and OT environment change control procedures.

the degree of rigor associated with corporate and OT environment change control procedures.
Additionally, using the corporate network for OT communication protocols could expose the OT

- 1978 Additionally, using the corporate network for OT communication protocols could expose the O 1979 components to cyber-attacks (e.g., DoS, man-in-the-middle or other network-based attacks).
- 1980 Utilizing separate networks allows greater flexibility to address security and performance
- 1981 requirements between the two environments
- 1982 Practical considerations, such as digital transformation, cost of OT installation, or maintaining a

1983 homogenous network infrastructure, often mean that a connection is required between OT and

1984 corporate or other IT networks. This connection represents additional risk, and organizations

1985 may want to minimize these connections and consider additional security controls for these

1986 connections. This section outlines security strategies for organizations to consider when

1987 architecting their OT environments to support cybersecurity objectives.

1988 **5.1 Cybersecurity Strategy**

1989 The adoption of a cybersecurity strategy can help organizations with cybersecurity decisions by

1990 providing context for decisions that would otherwise be more ad hoc. This can result in a more

1991 systematic implementation of risk decisions into the development and operations of systems

1992 supporting a comprehensive and sustainable cybersecurity program. A comprehensive and

accepted cybersecurity strategy can assist an organization with consistently maintaining

acceptable risk management throughout the life cycle of an OT system.

1995 System security is optimized by engineering design that is based on proactive loss prevention

- 1996 strategy. Such a strategy includes planned measures that are engineered to address what can
- happen rather than what is likely to happen—to proactively identify and rid the system of
 weaknesses and defects that lead to security vulnerabilities; to proactively understand the
- 1998 weaknesses and defects that lead to security vulnerabilities; to proactively understand the 1999 certainty and uncertainty of adversarial and non-adversarial threats; and to put in place the means
- and methods to protect against adverse consequences. Proactive systems security engineering
- 2001 also includes planning for failure regardless of whether the failure results from adversarial or
- 2002 non-adversarial events, and to ensure that the system is resilient to such events.

OT-specific Guidance and Recommendations

When planning their security strategy, organizations may need to consider critical infrastructure standards and regulatory requirements. Based on <u>guidance from CISA</u>, organizations may find that both IT and OT environments fall within the critical infrastructure sectors. Also, these standards and requirements are typically designed to protect critical cyber assets to support reliability, and may carry additional legal obligations for the organization.

2003 **5.1.1 Impacts of Choosing a Cybersecurity Strategy**

2004 By consciously choosing to develop and implement a cybersecurity strategy, an organization

establishes a disciplined approach to cybersecurity in its systems. This approach allows an

2006 organization to consider all aspects of the system life cycle, from procurement to

2007 decommissioning, with cybersecurity in mind. As a result, the organization can track that

2008 cybersecurity goals are realized in its systems.

2009 Decisions on cybersecurity strategy should flow from a high-level understanding of the

- 2010 operations, objectives, and cybersecurity goals of the organization. The organization may, for
- 2011 example, want its systems to display certain characteristics such as resiliency or trustworthiness.
- 2012 A strategy provides a framework that can help incorporate those characteristics into the final
- 2013 systems. The strategy can also include considerations such the flexibility to adopt new
- 2014 technologies (e.g., crypto agility, artificial intelligence [AI]/machine learning [ML] technologies,
- 2015 digital twins). Finally, a strategy can state the need for sound cybersecurity practices such as
- 2016 patching or monitoring.
- 2017 The cybersecurity strategy should directly impact the architectural decisions made for systems.

2018 The existence of an architecture informed by a cybersecurity strategy increases the likelihood

2019 that high-level cybersecurity goals will be reflected in the cybersecurity of individual systems.

2020 The strategy provides a document and reminder of those goals when decisions are being made at

the system level.

OT-Specific Guidance and Recommendations

OT assets are often very long-lived and reflect massive investments in operational, reliability, and safety testing. It is sometimes neither economically nor technically feasible to replace existing equipment and applications wholesale with newer alternatives in the short- or medium-term. Such equipment is at greater risk of attacks than equipment with the latest versions of security features and the latest security updates applied, deeply affecting security. Adoption of a security strategy can assist an organization in understanding the life cycle of its OT systems and adjusting approaches to maintain cybersecurity.

2022

2023 5.1.2 Defense-in-Depth Strategy

2024 Defense-in-depth is a multifaceted strategy integrating people, technology, and operations

2025 capabilities to establish variable barriers across multiple layers and dimensions of the

2026 organization. It's considered a best practice. Many cybersecurity architectures incorporate the 2027 principles of defense-in-depth, and the strategy has been integrated into numerous standards and

- 2027 principles of defense-in-depth, and2028 regulatory frameworks.
 - 2029 The basic concepts are to prevent single points of failure in the cybersecurity defenses and to
 - assume no single origin of threats. From this position, cybersecurity controls are organized to
 - 2031 provide layers of protection around the critical system and system components.

OT-Specific Guidance and Recommendations

A defense-in-depth strategy is particularly useful in OT environments because it can focus attention and defensive mechanisms on critical functions. Additionally, the principles of defense-in-depth are flexible, and organizations may find that they can be applied to a wide range of OT environments including ICS, SCADA, IoT, IIoT, and Hybrid environments.

Organizations should also consider that defense-in-depth requires an integration of people, processes, and technology to be effective. Additionally, cybersecurity defenses are not static and require changes and updates as risks change for the environment. To help establish and support an effective defense-in-depth architecture, organizations should consider:

- Training people to support the security environment and reduce risky behaviors
- Implementing appropriate and sustainable cybersecurity technology
- Implementing procedures required to monitor, respond, and adapt cybersecurity defenses to changing conditions

2032

2033 5.1.3 Other Cybersecurity Strategy Considerations

Traditional OT systems were designed to operate industrial processes safely and reliably without connections to external networks. However, due to the need for business agility and cost reduction for OT infrastructures, OT systems and networks are becoming more integrated with business networks and cloud infrastructures. Additionally, the introduction of IIoT systems into

2038 OT environments may have unintended cybersecurity consequences.

2039 Similarly, cloud computing capabilities such as infrastructure as a service, platform as a service,

2040 software as a service, and security as a service are increasingly being utilized by organizations.

2041 While the use of these capabilities to support IT services is relatively well understood, the ability

- 2042 to utilize these services to support OT environments may have additional availability challenges
- 2043 resulting from increased sensitivity to system performance levels or connection issues.
- As a result, adoption of a security architecture strategy may be impacted by the current state of
- 2045 existing OT environments. For example, based on the architectural strategy, procurement

2046 decisions might be adjusted to include migrating specific components to support the new

strategy. Also, organizations may find existing systems already support some or most of the

- 2048 security architecture strategy, so building on these existing capabilities could accelerate the
- strategy implementation. Additionally, new OT environments provide an opportunity to evaluate
- 2050 cyber risk early on and build cybersecurity into the design.

OT-Specific Guidance and Recommendations

Organizations should ensure that their security architecture strategy provides the required flexibility to evolve their environment while also carefully considering the impacts to operations and cybersecurity.

2052 **5.2 Defense-in-Depth Architecture Capabilities**

2053 Many organizations are embracing digital transformation initiatives that require altering their OT
 2054 environments and developing strategies that provide a multi-tiered information architecture,
 2055 supporting organization objectives such as:

- 2056 Maintenance of field devices, telemetry collection, or industrial-level process systems
- 2057 Enhanced data collection and dissemination
- 2058 Remote access

2059 Overall, integration between IT and OT is increasing as organizations adapt to changing local and global needs and requirements. Utilizing the principles of a defense-in-depth architecture to 2060 systematically layer security controls, including people, processes, and technology, can assist 2061 2062 organizations with strengthening their overall cybersecurity defenses. As a result, adversaries 2063 may find it increasingly difficult to penetrate the environment without detection. In the following sections, specific defense-in-depth layers are discussed, including topics and ideas for 2064 2065 organizations to consider when developing and implementing their defense-in-depth 2066 cybersecurity architecture. The layers are:

- 2067 Layer 1 Security Management
- 2068 Layer 2 Physical Security
- 2069 Layer 3 Network Security
- 2070 Layer 4 Hardware Security
- 2071 Layer 5 Software Security

2072 **5.2.1 Layer 1 - Security Management**

2073 Security management or governance is the overarching cybersecurity program supporting the OT 2074 environment. Sections 3 and 4 discuss the program and risk management considerations for 2075 organizations to establish their cybersecurity program. These programmatic and organizational 2076 decisions will guide and impact the decisions made for the other defense-in-depth layers. As a 2077 result, organizations should complete this layer before attempting to implement the other layers.

2078 **5.2.2 Layer 2 - Physical Security**

2079 Physical security measures are designed to reduce the risk of accidental or deliberate loss or

- 2080 damage to assets and the surrounding environment. The assets being safeguarded may include
- 2081 control systems, tools, equipment, the environment, the surrounding community, and intellectual
- 2082 property including proprietary data such as process settings and customer information.
- 2083 Organizations may also need to consider additional environmental, safety, regulatory, legal, and
- 2084 other requirements when implementing physical security to protect their environments.
- 2085 A defense-in-depth solution to physical security should consider the following attributes:

- Protection of Physical Locations. Classic physical security considerations typically include an architecture of layered security measures creating several physical barriers around buildings, facilities, rooms, equipment, or other informational assets. Physical security controls should be implemented to protect physical locations and may include fences, antivehicle ditches, earthen mounds, walls, reinforced barricades, gates, door and cabinet locks, guards, or other measures.
- Physical Access Control. Equipment cabinets should be locked when not required for operation or safety, and wiring should be neat and within cabinets or under floors.
 Additionally, consider keeping all computing and networking equipment in secured areas.
 Keys of OT assets like PLCs and safety systems should be in the "Run" position at all times unless they are being actively programmed.
- 2097 Access Monitoring Systems. Access monitoring systems include electronic surveillance 2098 capabilities such as still and video cameras, sensors, and identification systems (e.g., badge 2099 readers, biometric scanners, electronic keypads). Such devices typically do not prevent access to a particular location; rather, they store and record either the physical presence or the 2100 2101 lack of physical presence of individuals, vehicles, animals, or other physical entities. 2102 Adequate lighting should be provided based on the type of access monitoring device 2103 deployed. These systems can also sometimes alert or initiate action upon detection of 2104 unauthorized access.
- People and Asset Tracking. Locating people and vehicles in a facility can be important for safety reasons, and it is increasingly important for security reasons as well. Asset location technologies can be used to track the movements of people and vehicles to ensure that they stay in authorized areas, to identify personnel needing assistance, and to support emergency response.

OT-Specific Guidance and Recommendations

Organizations should consider if physical security of remote assets is implemented at differing levels and whether these differences could create cyber risks. For example, one remote location may utilize only a padlock with minimal electronic surveillance to secure access to network equipment which, if bypassed, could allow a malicious actor to gain access to an OT network segment from the remote location.

Organizations should also consider whether secondary services such as the communications and power supporting physical security devices (cameras, sensors, etc.) require additional redundancy, isolation, protection, and monitoring.

2110

2111 5.2.3 Layer 3 - Network Security

- 2112 Building from physical security, organizations should investigate network communications and
- 2113 how to protect the data and devices used to support their OT environment. While network
- 2114 security can encompass numerous aspects, this section focuses on several foundational elements
- 2115 to assist organizations with planning and implementing their network security capabilities. These

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 2116 include applying network architecture principles of segmentation and isolation; centralizing
- 2117 logging; network monitoring; and malicious code protection. Additionally, this section will
- 2118 discuss zero-trust architecture (ZTA) and considerations for applying these architecture
- 2119 enhancements to an OT environment.

2120 5.2.3.1 Network Architecture

2121 A good practice for network architectures is to segment and isolate IT and OT devices.

- 2122 Organizations should begin this process by considering how to characterize devices. For
- 2123 example, devices might be segmented based on management authority, level of trust, functional
- 2124 criticality, data flow, location, or other logical combinations. Organizations might also consider
- using an industry-recognized model such as the Purdue Model [Williams], ISA-95 Levels
 [IEC62264], Three-Tier IIoT System Architecture [IIRA19], or a combination of these models to
- 2120 organize their OT network segmentation. An additional network segmentation option for
- 2128 organizations to consider is incorporating the concept of a Demilitarized Zone (DMZ) as an
- enforcement boundary between network segments as depicted in Figure 16. Implementing
- 2130 network segmentation utilizing levels, tiers, or zones allows organizations to control access to
- 2131 sensitive information and components while also considering operational performance and
- 2132 safety.

2133

2134 Figure 16: High-level example of Purdue Model and IIoT Model for network segmentation with DMZ segments

OT-Specific Guidance and Recommendations

Whether using a risk-based approach, functional model, or other organizing principle, grouping components into levels, tiers, or zones is a precursor activity before organizations can consider applying isolation devices to protect and monitor communication between levels, tiers, or zones. When organizing assets, organizations should consider how the zone and isolation configuration impact day-to-day operations, safety, and response capabilities.

- 2135
- 2136 When properly configured, network architectures are used to support segmentation and isolation
- 2137 through enforcing security policies and controlling network communications. Organizations
- 2138 typically utilize their mapped data flows to identify required communications. These
- 2139 requirements are then incorporated into the network architecture and configured in the policy
- engines of the network devices to support monitoring communication between segments and
- 2141 permitting only authorized communications. Network devices such as switches, routers,
- firewalls, and unidirectional gateways/data-diodes that support traffic enforcement capabilities
- 2143 can be used to implement network segmentation and isolation.
- 2144 Firewalls are commonly used to support network isolation and are typically employed as
- 2145 boundary protection devices to control connections and information flows between network
- 2146 segments. Firewalls may be deployed as network devices or directly run on some hosts. Firewalls
- are very flexible isolation devices and typically constitute the primary mechanism for protecting
- 2148 OT devices.

OT-Specific Guidance and Recommendation

Appropriate firewall configuration is essential to properly securing the network segments. Firewall rulesets should be established to only permit connections between adjacent levels, tiers, or zones. For example, organizations utilizing a Purdue model architecture should implement firewall rules and connection paths that prevent Level 4 devices from directly communicating with Level 2, 1, or 0 devices. A similar concept would be applied to ISA/IEC 62443 or the Industrial IoT Consortium (IIC) architectures as well.

One area of considerable variation in practice associated with firewall rules is the control of outbound traffic from the control network. Allowing outbound connections from lower levels, tiers, or zones could represent a significant risk if unmanaged. Organizations will want to consider making outbound rules as stringent as inbound rules to reduce these risks.

An alternative to firewalls is a unidirectional gateway or data diode that permits authorized communication in only one direction. The use of unidirectional gateways may provide additional protections associated with system compromises at higher levels or tiers within the environment. For example, a unidirectional gateway deployed between Layers 2 and 3 might protect the Layer 0, 1, and 2 devices from a cybersecurity event that occurs at Layers 3, 4, or 5.

2149 **5.2.3.2 Centralized Logging**

2150 Network devices such as routers, gateways, switches, firewalls, servers, and workstations should

- 2151 be configured to log events to support monitoring, alerting, and incident response analysis.
- 2152 Logging capabilities are typically available for recording events in applications, OSs, and
- 2153 network communications. A centralized log management platform can assist organizations with
- 2154 supporting log retention, monitoring, and analysis efforts.

OT-Specific Guidance and Recommendation

Organizations should review the available logging capabilities and configure logging capabilities to record operational and cybersecurity events appropriate for their environment.

Organizations should establish how long event logs should be retained and ensure adequate storage is available to support log retention requirements.

2155 **5.2.3.3 Network Monitoring**

- 2156 Network monitoring involves organizations reviewing alerts and logs and analyzing them for
- 2157 signs of possible cybersecurity incidents. Tools and capabilities that support Behavior Anomaly
- 2158 Detection (BAD), Security Information and Event Management (SIEM), or Intrusion
- 2159 Detection/Prevention systems (IDS/IPS) can assist organizations with monitoring traffic
- throughout the network and generate alerts when they identify anomalous or suspicious traffic.
- 2161 Some other capabilities to consider for network monitoring include:
- **2**162 Asset management, including discovering and inventorying devices connected to the network
- **2163** Baselining typical network traffic, data flows, and device-to-device communications
- 2164 Diagnosing network performance issues
- 2165 Identifying misconfigurations or malfunctions of networked devices
- Additionally, organizations may want to consider incorporating additional services and
- 2167 capabilities such as threat intelligence monitoring to assist with establishing and maintaining an
- 2168 effective network monitoring capability.

OT-Specific Guidance and Recommendation

OT system traffic is typically more deterministic – repeatable, predictable, and designed – than IT network traffic. Organizations may leverage the deterministic nature of OT environments to support network monitoring for anomaly and error detection.

Organizations may want to understand the normal state of the OT network as a prerequisite for implementing network security monitoring to help distinguish attacks from transient conditions or normal operations within the environment. Implementing network monitoring in a passive (listen/learning) mode and analyzing the information to differentiate between known and unknown communication may be a necessary first step in implementing network security monitoring.

Organizations should consider the effects of encrypted network communications on their network monitoring capabilities and deployment strategies. For example, a BAD system or IDS may not be able to determine if encrypted network communication is malicious and could either generate false positive or false negative alerts for the traffic. Changing the data collection point to capture network traffic either before or after encryption (e.g., using host-

based network monitoring tools) could assist with improving monitoring capabilities when encrypted communication is expected.

IDS and IPS products are effective in detecting and preventing well-known Internet attacks, and some IDS and IPS vendors have incorporated attack signatures for various OT protocols such as Modbus, DNP3, and ICCP. An effective IDS/IPS deployment typically involves both host-based and network-based capabilities. Organizations should consider the impact automated responses associated with IPS might have on the OT environment before deploying. In some cases, organizations may consider placing IPS units at higher levels in the environment (e.g., the DMZ interfaces) to minimize potential issues with automated responses impacting OT.

In OT environments, network-based monitoring capabilities are typically deployed on boundary protection devices using switched port analyzer (SPAN) ports instead of in-line network taps that could create a communication point of failure. Organizations should also consider deploying host-based monitoring capabilities on compatible OT devices such as HMIs, SCADA servers, and engineering workstations to improve monitoring capabilities, provided the addition of the tools does not adversely impact operational performance or safety.

2169 **5.2.3.4 Zero-Trust Architecture (ZTA)**

- 2170 ZTA is a cybersecurity paradigm focusing on protecting resources (e.g., information services,
- 2171 data) based on the premise that authorization decisions are made closer to the resource being
- 2172 requested and are continuously evaluated rather than implicitly granted [SP800-207].
- 2173 Conventional network security focuses on segmentation and perimeter defenses. Once inside the
- 2174 network perimeter, users are typically considered "trusted" and often given broad access to
- 2175 accessible resources. As a result, boundary protection devices between zones do not mitigate
- 2176 lateral movement risks within a zone. Additionally, with the growing prevalence of distributed
- 2177 computing, wireless and cellular communications, along with cloud and hybrid-cloud
- environments, traditional network perimeters and boundaries are becoming less defined. For
- 2179 these situations, organizations might consider incorporating the principles of zero trust into their 2180 security architecture.
- 2181 Some challenges to implementing a ZTA include:
- Organizations may not find a suitable single solution for ZTA and, instead, may need to
 integrate several technologies with varying maturity levels to support their environment.
- Migrating an existing environment may require more investments in time, resources, and
 technical ability to implement zero-trust principles.

OT-Specific Guidance and Recommendations

Some OT components (e.g., PLCs, Controllers, HMI) may not support the technologies or protocols required to fully integrate with a ZTA implementation. As a result, a ZTA implementation might not be practical for some OT devices. Instead, organizations should

consider applying ZTA on compatible devices such as those typically found at the functionally higher levels of the OT architecture (e.g., Purdue Model Levels 3, 4, 5, and the OT DMZ).

Organizations may also want to consider the impact on operations and safety function. For example, would any adverse impacts occur if the ZTA solution increases the latency to respond to resource requests or if one or more ZTA components become unavailable? Based on this analysis, organizations should consider adjusting the ZTA implementations to minimize latency and ensure adequate redundancy to minimize risks to OT and safety operations.

Another important aspect of ZTA implementations is identity of person and non-person entities accessing resources. Within OT environments, shared credentials may be utilized which could impact the ability to fully implement a ZTA solution.

2186

2187 5.2.4 Layer 4 - Hardware Security

2188 Hardware security protection mechanisms provide the foundation for supporting security and 2189 trust for the devices within an environment. Once device trust is established, the state must be

2190 maintained and tracked in accordance with the system model and policy. To support these

2191 capabilities, some vendors provide embedded technology such as the Trusted Platform Module

2192 (TPM) or provide hardware implementation for Advanced Encryption Standard (AES) and

2193 Secure Hash Algorithm (SHA). Overall, hardware security capabilities provide the capability to

2194 enhance endpoints to provide specific function and security requirements, including:

- 2195 Monitoring and analysis
- 2196 Secure configuration and management
- 2197 Endpoint hardening
- 2198 Integrity protection
- 2199 Access control
- 2200 Device identity
- 2201 Root of trust
- 2202 Physical security

OT-Specific Guidance and Recommendations

Organizations should review available hardware security and automated capabilities to determine how they can support OT environments without impacting operational performance, safety, or capabilities.

2203 5.2.5 Layer 5 - Software Security

2204 Software security protection mechanisms provide organizations with capabilities to ensure 2205 applications and services supporting OT are used and maintained properly. Overall, software 2206 security capabilities can enhance endpoint security when organizations incorporate:

- 2207 Application allowlisting
- 2208 Patching
- 2209 Secure code development
- 2210 Configuration management, including application hardening

2211 **5.2.5.1** Application Allowlisting

- 2212 Application allowlisting technologies provide an additional protection mechanism on hosts by
- 2213 restricting which applications are allowed to execute. When properly configured, non-authorized
- 2214 applications will not execute on the host environment.

OT-Specific Guidance and Recommendations

The relatively static nature of OT environments presents an opportunity for organizations to include application allowlisting as part of their defense-in-depth strategy, and is a recommended best practice by DHS. When considering application allowlisting within an OT environment, organizations should coordinate with their vendors and review available implementation guidance such as NIST SP 800-167, *Guide to Application Whitelisting* [SP800-167]; <u>Guidelines for Application Whitelisting in Industrial Control Systems</u>; or relevant guidance for their industry. The configurations and policies should be thoroughly tested before being deployed to ensure the rules and settings properly support the organizational security objectives.

2215 **5.2.5.2** Patching

- 2216 Patches have two main purposes: to fix vulnerabilities and to enhance functionality. While
- 2217 enhancing software functionality is important, in the context of defense-in-depth software
- 2218 security, the focus of patching is associated with reducing vulnerabilities. As a result, patch
- 2219 management is a defense-in-depth capability to support vulnerability management as part of an
- 2220 organizational risk management strategy.
- 2221 Deploying patches to OT environments requires additional considerations for organizations,
- 2222 including testing and validation to ensure the patches do not impact operational capabilities or
- safety. OT operational requirements can also impact the frequency patches are applied. For
- example, some OT environments must run nearly continuously for extended periods of time or
- have small maintenance windows when approved updates could be applied. Additionally,
- 2226 patching older OT components that run on unsupported OSs may not be an option. In these
- cases, organizations may want to consider updating their OSs or investigating additional controls
 that can protect the environment from attempts to exploit known vulnerabilities. Some tools,
- such as web application firewalls (WAF) and IPS, could be configured to provide additional

2230 protection to detect or prevent attacks against unpatched vulnerabilities while the organization

2231 waits for an opportunity to apply the updates.

OT-Specific Guidance and Recommendations

Whenever possible, patches should be tested on a sandbox system (test environment) to ensure they do not cause problems before being deployed to a production system. Organizations should plan patches and updates during scheduled maintenance windows for the environment and have a recovery plan for the OT component or system being patched.

Organizations should also consider that different levels, tiers, or zones may have different availability requirements and, as such, may have different abilities to support patching. Whenever possible, organizations should prioritize patching components within DMZ environments and when vulnerabilities exist that impact availability and integrity or would allow unauthorized remote access to the OT environment.

2232

2233 5.2.5.3 Secure Code Development

For organizations developing in-house systems and components, policies and procedures to support and validate secure code development practices should be incorporated into the cybersecurity program. The software development life cycle (SDLC) should include security during each phase of software development. This should include security reviews and coding techniques for each of the following processes:

- 2239 Using or developing tools to audit and automate secure code techniques
- **2240** Testing and reviewing code to comply with secure coding practices
- 2241 Testing the software for security errors in programming

For organizations that procure components or services from third parties, reviewing these same practices should be considered prior to executing contracts with vendors. Organizations can help industry move toward more secure products by requesting these practices in their service level agreements and procurement actions.

2246 **5.2.5.4 Configuration Management**

Applying configuration management practices for cybersecurity settings supporting both secure

- 2248 configurations and application hardening is important to meet organization and regulatory
- security requirements. These settings may include setting access controls for restricting access or
- enabling encryption to protect data at rest or in transit. Application hardening procedures may
- include disabling or blocking specific network communication ports, application features, orunnecessary services running on the system.
- 2253 Encrypting data that flows over networks (in transit) or data stored in memory and hard drives (at
- rest) can also be used in defending OT. Encryption prevents an attacker from viewing or
- 2255 modifying cleartext data streams. Because encryption and the subsequent decryption process use

algorithms to create ciphers, encryption adds latency and may not be suitable for all OT devices.

2257 Knowing the advantages and disadvantages of encryption can help organizations make an

2258 informed choice on where to include encryption in the defense-in-depth strategy.

OT-Specific Guidance and Recommendations

Organizations should consider using encryption to support secure connections or conduits for OT environments when the connections must pass over non-OT network segments such as the corporate network or the internet. Virtual private network (VPN) connections should also use encryption protocols, such as Transport Layer Security (TLS) or Internet Protocol Security (IPsec), for securing the data.

Encryption can also be used on hard drives to protect information at rest. Full disk encryption is recommended for portable laptops and devices. Organizations may also want to consider encrypting folders containing sensitive files.

Organizations must also consider that encryption can negatively impact other defense tools such as network monitoring. For example, an IDS might not be able to determine if an encrypted packet is malicious, resulting in either false-positive or false-negative alerts.

2259

2260 **5.3** Additional Cybersecurity Architecture Considerations

When establishing a security architecture for supporting OT and IIoT environments,
 organizations should include considerations for supporting cyber-related safety, availability,
 geographically distributed systems, environmental considerations, and regulatory requirements
 into the security architecture designs and implementations. The following subsections discuss

these considerations in more detail.

2266 **5.3.1 Cyber-Related Safety Considerations**

OT systems are generally designed with specific safety goals, depending on both the business environment and regulatory requirements. Organizations should consider whether the additional communication and cybersecurity requirements of safety systems, e.g., segmentation and isolation of safety systems from other OT systems, is required. Additionally, safety requirements can influence selection of security mechanisms. For example, safety considerations may require that an organization use physical separation as opposed to logical separation.

- OT systems typically employ fail-to-a-known-state design (e.g., fail-safe design) in the event of an unexpected situation or a component failure. Fail-safe design considers placing the equipment or process in a safe state that prevents injury to individuals or destruction to property and avoids cascading event or secondary hazards. Cyber-related events such as the loss of network communications could trigger these fail-safe events. To minimize false positives, define the thresholds that OT components can operate at with reduced or disrupted capabilities such as lost
- 2279 network communications.

2280 **5.3.2 Availability Considerations**

2281 Operational continuity management requires managing availability at multiple levels – data,

2282 applications, IT infrastructure, power, and other supporting utilities such as HVAC, water, steam, 2283 compressed air, etc. Failure of these systems can have a cascading effect on OT systems and can

adversely impact the OT operation. Different availability considerations are presented below.

2285 Data, Applications, and Infrastructure

2286 Architecture requirements and design should support the redundancy needs of the OT systems.

- 2287 Availability can be enhanced using redundancy at the communication, system, or component
- 2288 level such that a single failure is less likely to result in a capability or information outage.
- 2289 Cybersecurity architecture should take into consideration any redundant communication and
- 2290 protect it to the same security level as the primary.
- Additionally, a data backup and restoration process will facilitate speedy recovery of systems in
- case of data lost due to cyber-attacks or other reasons. Examples of important data and files are

2293 operational data, program files, configuration files, system images, firewall rules and access

2294 control list (ACLs). A "backup-in-depth" approach, with multiple layers of backups (e.g., local,

facility, disaster) that are time-sequenced such that rapid recent local backups are available for

- immediate use and secure backups are available to recover from a massive security incident (e.g.,
- ransomware attack) can help improve OT system availability. Periodic testing of data backup and restore capabilities will ensure that they will be available when the need arises.
- restore capabilities will ensure that they will be available when the need arise

2299 Primary and Alternate Power Sources

- 2300 Architectural considerations should include the impact of power outage for OT systems. For
- example, if the OT systems need a graceful degradation or orderly shutdown, then an alternate
- 2302 backup power may be considered. In addition, if the organization's business continuity plan
- requires that the OT systems need to continue operating in the event of an extended loss of the
- 2304 primary power source, a long-term alternate power supply for the OT systems that is self-
- 2305 contained and not reliant on external power generation can be implemented. The monitoring and
- 2306 controls systems for the power system are vulnerable to cyber-attacks. Appropriate cybersecurity
- 2307 practices should be implemented to protect these systems from cyber-attacks.

2308 Other Utilities

- 2309 Industrial facilities typically have monitoring and controls systems that manage uninterruptable
- 2310 power supplies (UPSs), HVAC, fire alarm systems, boilers, cooling water plant, steam,
- 2311 compressed air, etc. These monitoring and controls systems are also vulnerable to cyber-attacks
- and can affect the OT systems. Appropriate cybersecurity practices should be implemented to
- 2313 protect these systems from cyber-attacks.

OT-Specific Guidance and Recommendations

Disaster recovery planning is another important activity for OT systems, especially where there are safety concerns. Organizations should establish and maintain a disaster recovery plan (DRP) detailing the actions to take before, during, and after a natural, environmental, or human-caused (intentionally or unintentionally) disaster. The DRP should also include instructions for restoring and restarting failed components and integrating them back into operation. Organizations should also consider testing the DRP to ensure that the necessary architecture capabilities can be operationalized in an actual disaster recovery scenario. Tabletop exercises can also be used to simulate a disaster recovery event to support testing.

2314 **5.3.3 Geographically Distributed Systems**

- 2315 Many of the critical infrastructure industries have sites that are geographically distributed.
- 2316 Organizations should consider if differences in physical security at remote locations create risks
- 2317 to the OT operational capabilities or safety. The necessary cybersecurity and communication
- 2318 infrastructure should be provided at the remote sites to protect them from cyber threats and to
- 2319 communicate cybersecurity monitoring information.

OT-Specific Guidance and Recommendations

The communication between sites should be encrypted and authenticated end-to-end whether the connection is via point-to-point link, satellite, or Internet. Organizations should also ensure adequate bandwidth is provisioned for collecting cyber monitoring data in addition to the operational data from remote locations.

If the organization has several geographically dispersed sites, the organization should consider whether security operation will be managed from a central security operations center (SOC) or from regionally distributed SOCs. Availability of qualified personnel can impact these decisions.

2320 5.3.4 Regulatory Requirements

- 2321 Regulated industries must consider cyber-related regulatory requirements when designing their
- 2322 cybersecurity architecture. For example, NERC Standard CIP-005 (see Appendix D.1.9.1)
- 2323 provides cybersecurity architecture requirements for bulk electric systems. Similar requirements
- and guidance exist for other regulated industries.

2325 **5.3.5 Environmental Considerations**

- 2326 Organizations should consider whether any of their processes and equipment pose environmental
- 2327 hazards. The hazard analysis will typically provide this information. If an environmental hazard
- has been identified, organizations should consider architectural measures to prevent
- environmental hazard due to cybersecurity failure.

2330 **5.3.6 Field I/O (Purdue Level 0) Security Considerations**

- 2331 Many of the devices and the communication protocols at the Field I/O level (Purdue Level 0)
- 2332 (e.g., sensors, actuators) do not have the ability to be authenticated. Without authentication, there
- 2333 is the potential to replay, modify, or spoof data. Organizations should make a risk-based decision
- 2334 considering where within the OT system (e.g., the most critical process) the use of mitigating

- 2335 security controls (e.g., digital twins, separate Field I/O monitoring network) should be
- 2336 implemented to detect incorrect data.

2337 **5.3.7 Additional Security Considerations for IIoT**

- 2338 The introduction of IIoT to OT environments can increase connectivity and information
- exchanges with enterprise systems and cloud-based systems which may require additional
- considerations for the security architecture. For example, introduction of IIoT devices in OT
- environments may require altering boundaries or exposing more interfaces and services.
- Additionally, the security capabilities of IIoT devices may need to be considered when
- 2343 developing the security architecture.

OT-Specific Guidance and Recommendations

In addition to security architecture considerations, organizations may also need to consider the impact to policy management, enforcement, and governance to support IIoT. Additionally, integration of IIoT in OT environments may require a tighter collaboration between IT and OT security teams for managing the security operations. For example, real-time situational awareness should be shared between IT and OT security teams.

2344

2345 Application and Infrastructure

2346 Organizations should consider the IIoT data flow use cases, including those that share data

- 2347 externally, to determine whether additional access control mechanisms are necessary.
- 2348 Organizations should also consider that the attack vectors for IIoT may be different from those
- 2349 managed for OT environments for example, due to the increased communications requirements
- 2350 or the use of additional services such as cloud systems to support operational requirements.

OT-Specific Guidance and Recommendations

Organizations should consider the endpoint security capabilities of the IIoT devices being deployed. For example, the IIC suggests that organizations consider the following security capabilities:

- Endpoint tamper resistance capabilities
- Endpoint root of trust
- Endpoint identity
- Endpoint access control
- Endpoint integrity protection
- Endpoint data protection
- Endpoint monitoring & analysis
- Endpoint configuration and management

- Cryptographic techniques
- Capability to harden endpoints

2352 Cybersecurity Capability Considerations

2353 Compute resources including processing, memory, and storage vary among IIoT devices. Some 2354 HoT devices may have constrained resources and others may have unused capabilities. Both cases have implications for cybersecurity. Organizations should consider how the resources and 2355 2356 capabilities available in the IIoT devices will integrate into the security architecture to achieve their cybersecurity objectives. Additionally, organizations should consider if the operational and 2357 2358 safety impacts for IIoT differ from the operational and safety impacts for other OT devices. For 2359 example, IIoT devices may support a separate data monitoring (read-only capability) for the 2360 environment and have minimal impact on operational controls or safety which may allow 2361 organizations to implement security operations differently than those established for OT devices.

2362 **5.4 Cybersecurity Architecture Models**

Building on the concepts and guidance from Sections 5.1, 5.2, and 5.3, the following subsections

- will expand on the general OT and IIoT environments described in Section 2 to provide
- examples for how the general environments might be adapted to support defense-in-depthsecurity architectures.

2367 5.4.1 Distributed Control System (DCS)-Based OT Systems

As described in Section 2, a Distributed Control System (DCS) is used to control production

2369 systems within the same geographic location for industries. Figure 17 shows an example DCS

2370 system implementation. Figure 18 shows an example defense-in-depth architecture applied to the

2371 DCS system.

2374

2373

Figure 17: DCS implementation example

2375 2376

Figure 18: Defense-in-depth security architecture example for DCS system

For the Figure 18 example, the assumption is that the organization has already addressed Layer 1
Security Management and Layer 2 – Physical Security. For Layer 3 – Network Security, the

2379 organization should consider incorporating the following capabilities in the security architecture:

- 2380 • Separate networks into different levels or zones. In this example, the devices are split into 2381 different levels based on function. The Field Level includes devices typically found in the 2382 Purdue model levels 0, 1, and 2. The Operations Management level includes devices for 2383 monitoring and managing the field level devices and includes the Purdue level 3 components. The DMZ includes devices that support bridging the operations management and enterprise 2384 2385 tiers. Organizations should also consider if additional network segments are required for 2386 safety or security systems (e.g., physical monitoring and access controls, doors, gates, 2387 cameras, Voice over IP [VoIP], access card readers). Network segmentation is an important 2388 step in applying a defense-in-depth strategy.
- Boundary devices (e.g., firewalls) are added to control and monitor communications between different levels. Industrial-class firewalls are sometimes used between the field and operations management levels to provide additional support for OT-specific protocols or to allow devices to operate in harsh environments. Rules for both inbound and outbound communication should be defined so that only authorized communication passes between adjacent levels.
- Implement a DMZ to separate the OT environment from the enterprise network. Any communications between the Enterprise Level and the Operations Management level are required to go through services within the DMZ. Since the DMZ connects to outside environments, the services within the DMZ must be monitored and protected to avoid compromises within the DMZ that allow pivoting to the OT environment without detection.
- The security architecture diagram shows an IT authentication server in the Enterprise
 network to authenticate users in the Enterprise network, and a separate OT authentication
 server in the operations management network for OT users. Organizations may want to
 consider this approach if it supports their risk-based security objectives.
- For Layer 4 Hardware Security, and Layer 5 Software Security, organizations should consider applying the principle of least functionality on all field, operations management, and DMZ devices to support application and device hardening. Organizations should identify and disable any non-essential capability, software, or ports from the devices. For example, a web server or SSH server may be available in some newer-model PLCs or HMIs. If these services are not used, they should be disabled and the associated TCP/UDP ports should be disabled. Only enable the functionality when required.

2411 **5.4.2 DCS/PLC-Based OT with lloT**

- 2412 Building on the guidance for DCS/PLC-based OT environments in Section 5.4.1, Figure 19
- shows a simplified example security architecture implementation for the DCS system with
- 2414 additional IIoT devices configured to utilize a local IIoT platform for providing computing
- 2415 capabilities. Due to different communication and architectural components supporting IIoT, the
- 2416 example shows separate network segments for supporting the additional IIoT components.
- 2417 Communication from the IIoT platform tier is routed through the DMZ border firewall, allowing
- organizations to consider data transmission to servers in the DMZ or to the Enterprise/Internet as
- 2419 required to support IIoT operational requirements. Additionally, this also permits the
- 2420 cybersecurity services located in the DMZ to monitor the IIoT platform tier.

Figure 19: Security architecture example for DCS system with IIoT devices

2423 Alternatively, some organizations may use cloud services for their IIoT platform. In this case,

2424 organizations should consider how to secure communications from the edge to the cloud IIoT

2425 platform. Organization should also consider routing the communication through the DMZ

boundary firewall to manage and monitor them.

2427 5.4.3 SCADA-Based OT Environments

- 2428 An example implementation showing the components and general configuration of a SCADA
- system is depicted in Figure 20. Typically, primary and backup control centers support one or
- 2430 more remote stations based on geographic locations, and regional control centers are
- 2431 geographically located to support one or more primary or backup control centers. Due to the
- 2432 distributed nature of the remote stations and control centers, communication between locations
- 2433 typically passes over external or WAN connections using wireless or wired mediums.

2435

Figure 20: An example SCADA system in an OT environment

2436 Figure 21 shows an example defense-in-depth implementation for the example SCADA system.

2437 For this example, the assumption is that the organization has already addressed Layer 1 –

2438 Security Management and Layer 2 – Physical Security. For Layer 3 – Network Security, the

2439 organization should consider incorporating the following capabilities in the security architecture:

- Separate networks into different zones or regions; it is an important step in applying a
 defense-in-depth strategy in the SCADA environment. Additional separation should be
 considered for security systems (e.g., physical monitoring and access controls, doors, gates,
 cameras, VoIP, access card readers).
- Boundary devices (e.g., firewalls) are added between the different regions to control and monitor communications between the network segments. Industrial-class stateful firewalls may offer more support for OT-specific protocols, enhancing protection for OT devices like the PLC and controllers. Rules for inbound and outbound communication should be defined so that only authorized communication passes between regions.
- Use secure connections (e.g., VPN tunnel. encrypted channel, point-to-point connection)
 between network segments, such as between a regional center and primary control centers,
 and between remote stations and control centers. For geographically distanced locations,
 secure connections can be connected over the Internet/WAN connection. Devices in the
 network segments should only connect to other segments through the secure connection and
 should be restricted in accessing the Internet.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 2455 Implement a DMZ to separate the control centers from the enterprise network. Any
- communications between the enterprise network and the control centers must go through
- services within the DMZ. Since the DMZ connects to outside environments, the services
 within the DMZ must be monitored and protected to avoid compromises within the DMZ that
- 2459 might allow pivoting to the OT environment without detection.

2461

Figure 21: Security architecture example for SCADA system

2462 For Layer 4 – Hardware Security, and Layer 5 – Software Security, organizations should

- 2463 consider applying the principle of least functionality to all remote station components, control
- 2464 center components, and DMZ devices to support application and device hardening.
- 2465 Organizations should identify and disable any non-essential capability, software, or ports from
- the devices. For example, a webserver or SSH server may be available in some newer-model
- 2467 PLCs or HMIs. If these services are not used, they should be disabled and the associated
- 2468 TCP/UDP ports should be disabled. Only enable the functionality when required.

2469 6 Applying the Cybersecurity Framework to OT

- 2470 Many public and private sector organizations have adopted the NIST Cybersecurity Framework (CSF) [CSF] as a means for guiding cybersecurity activities and considering cybersecurity risks. 2471 2472 The Framework consists of five concurrent and continuous Functions-Identify, Protect, Detect, Respond, and Recover-for presenting industry standards, guidelines, and practices in a manner 2473 2474 that allows for communication of cybersecurity activities and outcomes across the organization. 2475 When considered together, these functions provide a high-level, strategic view for cybersecurity risk management. The Framework further identifies underlying key Categories and 2476 2477 Subcategories for each Function and matches them with example Informative References such as 2478 existing standards, guidelines, and practices for each Subcategory.
- 2479 The five Functions include 23 Categories of cybersecurity outcomes and Subcategories that
- 2480 further divide the Categories into more specific technical or management activities. For this
- 2481 section, each subsection references a CSF Function and Category and includes the CSF two-
- 2482 letter abbreviations for reference.

The CSF functions guide the following actions:

Identify (ID) – Develop an organizational understanding to manage cybersecurity risk to systems, people, assets, data, and capabilities.

Protect (PR) – Develop and implement appropriate safeguards to ensure delivery of critical services.

Detect (DE) – Develop and implement appropriate activities to identify the occurrence of the cybersecurity event.

Respond (RS) – Develop and implement appropriate activities to take action regarding a detected cybersecurity incident.

Recover (RC) – Develop and implement appropriate activities to maintain plans for resilience and to restore any capabilities or services that were impaired due to a cybersecurity incident.

2483

- 2484 All CSF Functions and selected CSF Categories and Subcategories are covered in this section.
- Additionally, some Categories include additional OT-specific considerations that are not
- included in the CSF.

2487 6.1 Identify (ID)

The Identify Function provides foundational activities to effectively use the CSF. The intended
outcome of the Identify Function is to develop an organizational understanding to manage
cybersecurity risk to systems, people, assets, data, and capabilities.

2491 6.1.1 Asset Management (ID.AM)

The ability for organizations to properly and consistently identify and consistently manage data,
personnel, devices, systems, and facilities based on their relative importance provides a
foundational capability to support an organizational cybersecurity program. Additionally,
updating inventory information when components are added, removed, or changed (e.g., patched,
new firmware installed, component swapped during maintenance) helps organizations accurately
manage their overall environment risks. Organizations should consider including the following to
support their asset management capability:

- 2499 Unique identifiers to differentiate and track assets
- Hardware inventory management to track computing and network devices within the
 environment including device details and location. Device details might include vendor,
 model, serial number, purchase information, and manufacturing/build information (e.g.,
 provenance information).
- Software and firmware inventory management to track software and firmware installed with
 the OT components, including version numbers and location information, Software Bill of
 Materials (SBOM), etc.
- 2507 Vendor information to establish a repository of vendor information, points of contact,
 warranty information, locations of recall and update information, etc.
- Documented roles and responsibilities to identify specific individuals, teams, or organization
 groups who represent the asset owner and those with operation & maintenance and
 cybersecurity roles and responsibilities
- 2512 Supplemental guidance for ID.AM can be found in the following documents:
- 2513 INIST SP 1800-5, *IT Asset Management*
- 2514 NIST SP 800-53 Rev. 5, <u>Security and Privacy Controls for Information Systems and</u>
 2515 <u>Organizations</u>

OT-Specific Recommendations and Guidance

Organizations should consider the criticality of a complete and accurate asset inventory for managing risk within the OT environment. Accurate inventory information supports multiple risk management objectives including risk assessment, vulnerability management, and obsolescence tracking.
While automated tools for supporting asset management are generally preferable, organizations should consider how the tool collects information and if the collection method (e.g., active scanning) may have a negative impact on their OT systems. Performing a test using the automated asset management tools on offline systems or components is recommended prior to deployment within the OT production environment. When automated tools are not feasible due to network architectures or other OT environment issues, the organization should consider manual processes for maintaining a current inventory.

2516

2517 6.1.1.1 Mapping Data Flows (ID.AM-3)

2518 Data flow diagrams enable a manufacturer to understand the flow of data between networked

2519 components. Documenting data flows enables organizations to understand expected behavior of

their networks. This understanding of how devices communicate assists with troubleshooting as

well as response and recovery activities. This information can be leveraged during forensic

activities or used for analysis to identify anomalies.

OT-Specific Recommendations and Guidance

Organizations should consider the impact on OT systems from the use of automated data flow mapping tools that use active scanning or require network monitoring tools (e.g., in-line network probes). Impacts could be due to the nature of the information, the volume of network traffic, or momentary disconnection of manufacturing system components from the network. Consider using data flow mapping tools that utilize these methods during planned downtime.

2523

2524 6.1.1.2 Network Architecture Documentation (supports the outcome of ID.AM)

Network architecture documentation tools enable a manufacturer to identify, document, and diagram the interconnections between networked devices, corporate networks, and other external connections. A comprehensive understanding of the interconnections within the environment is critical for successful deployment of cybersecurity controls. This information is equally important for effective network monitoring.

OT-Specific Recommendations and Guidance

Network architecture documentation tools that use automated topology discovery technologies are only able to capture details from IP-based networked devices. Many OT environments contain isolated systems, components, or systems connected on non-IP networks. The OT environment may not be technically capable of using automated network architecture documentation tools. Manual processes may be required to document these components.

Asset owners may also want to consider how automated scanning activity may potentially impact the OT system by testing automation tools in a non-production environment. Based on

testing results, asset owners should consider utilizing automated OT network architecture documentation tools during planned downtime.

Organizations may also want to consider utilizing physical inspections of OT network connections or analysis of network logs to document the OT network architecture, especially if the network is not large or complicated. Incorporating OT network activity monitoring may help organizations identify the addition or removal of devices within the environment between planned scanning activities.

2530

6.1.2 Governance (ID.GV)

2532 Effective governance involves organization leadership incorporating risk management objectives

along with resiliency, privacy, and cybersecurity objectives into the strategic planning process

and providing the required resources to effectively implement and sustain the cybersecurity

2535 program. From this process, organization leadership develops and disseminates policies

establishing security requirements for their environments. These policies include, for example,

2537 the identification and assignment of roles, responsibilities, management commitment, and

2538 compliance. The policies may also reflect coordination among organizational entities responsible

for the different aspects of security (i.e., technical, physical, personnel, cyber-physical, access control, media protection, vulnerability management, maintenance, monitoring).

- 2543 NIST SP 800-39, <u>Managing Information Security Risk: Organization, Mission, and</u>
 2544 <u>Information System View</u>
- 2545 INIST SP 800-37 Rev. 2, <u>Risk Management Framework for Information Systems and</u>
 2546 Organizations: A System Life Cycle Approach for Security and Privacy
- 2547 INIST SP 800-100, *Information Security Handbook: A Guide for Managers*
- 2548 NISTIR 8286, *Integrating Cybersecurity and Enterprise Risk Management (ERM)*

OT-Specific Recommendations and Guidance

Organizations should consider:

- Ensuring the cybersecurity program is provided sufficient resources to support the organization's IT and OT risk management strategy
- Ensuring that policies take into consideration the full life cycle of the OT systems
- Ensuring that legal and regulatory cybersecurity requirements affecting the OT operations are understood and managed

²⁵⁴¹ Sections 3 and 4 provide additional details for governance. Supplemental guidance for ID.GV 2542 can be found in the following documents:

- Establishing one or more senior official positions with responsibility and accountability for the organization's governance and risk management for IT and OT cybersecurity programs
- Establishing communication and coordination between IT and OT organizations
- Cross-training IT and OT personnel to support the cybersecurity program

2549

2550 6.1.3 Risk Assessment (ID.RA)

A cybersecurity risk assessment is performed to identify risks and estimate the magnitude of harm to operations, assets, or individuals resulting from cyber-incidents such as unauthorized access, use, disclosure, disruption, modification, or destruction of an information system or data. Organizations should consider the frequency for updating risk assessments and testing system cybersecurity controls.

- 2556 Supplemental guidance for ID.RA can be found in the following documents:
- 2557 INIST SP 800-30 Rev. 1, *Guide for Conducting Risk Assessments*
- NIST SP 800-37 Rev. 2, <u>Risk Management Framework for Information Systems and</u>
 Organizations: A System Life Cycle Approach for Security and Privacy
- NIST SP 800-39, <u>Managing Information Security Risk: Organization, Mission, and</u>
 <u>Information System View</u>

OT-Specific Recommendations and Guidance

In OT environments, risks and impacts may be related to safety, health, and the environment, in addition to business/financial impacts. As a result, organizations may find that determining a cost-to-benefit analysis for some types of risks is not possible. In these cases, organizations should consider reviewing past cyber and non-cyber incidents that have resulted in loss of power, loss of control, loss of upstream feed, loss of downstream capacity, and major equipment failures. A PHA, FMEA, or analysis of past events can be used to understand the potential impact of a cyber incident. ISA 62443-3-2 provides guidance on how to assess cyber risk in an environment with these potential consequences.

Risk assessments also require the identification of both vulnerabilities and threats to the OT environment. Maintaining an accurate inventory of the IT and OT assets within the environment of operation to include product vendor, model numbers, firmware, OSs, and software versions installed on the assets facilitates the identification, tracking, and remediation of vulnerabilities. OT-specific vulnerability information is available through multiple methods, including:

- Monitoring security groups, associations, and vendors for security alerts and advisories
- NVD for detailed information on known vulnerabilities for hardware and software assets

Threat information relevant to the environment can be obtained from both internal resources as well as external threat intelligence information sharing forums. Organizations should consider participating in cyber threat information sharing [SP800-150].

2562

2563 6.1.4 Risk Management Strategy (ID.RM)

The risk management strategy guides how risk is framed, assessed, responded to, and monitored, and provides a consistent approach to making risk-based decisions across the organization. Risk tolerance, assumptions, constraints, priorities, and trade-offs are identified for investment and operational decision making. Additionally, the risk management strategy identifies acceptable risk assessment methodologies, potential risk responses, and a process to continuously monitor the security posture (or implementation of security countermeasures/outcomes) of the organization.

- 2571 Section 3 describes the overall risk management process for supporting an effective
- cybersecurity program. The following NIST documents provide additional implementation guidance for developing a risk management strategy:
- 2574 NIST SP 800-37 Rev. 2, <u>Risk Management Framework for Information Systems and</u>
 2575 Organizations: A System Life Cycle Approach for Security and Privacy
- 2576 NIST SP 800-39, <u>Managing Information Security Risk: Organization, Mission, and</u> <u>Information System View</u>
- 2578 NISTIR 8179, <u>Criticality Analysis Process Model: Prioritizing Systems and Components</u>

OT-Specific Recommendations and Guidance

When establishing an OT risk management strategy, organizations should consider:

- Ensuring that the risk tolerance of an OT environment is informed by the organization's role in critical infrastructure and sector-specific risk analysis
- Documenting failure scenarios involving IT components within the OT environment and their effect on operations and safety
- Establishing processes to periodically update information to determine the current risk posture for the environment and coordinate required adjustments to risk management and management controls

Overall risk can also be reduced by addressing likelihood and consequence. For OT systems, the risk management strategy should consider non-security and safety controls (e.g., pressure relief valves, manual valves) that can also help reduce the consequence of a failure.

2580 6.1.5 Supply Chain Risk Management (ID.SC)

2581 Supply chains are multifaceted and are built on a variety of business, economic, and

technological factors. Organizations choose their suppliers, and consumers choose their sources

based on a range of factors that vary from corporate preferences and existing/ongoing business

relationships to more discrete considerations such as the existence of limited sources of supply or

2585 other unique characteristics.

The subcategories (outcomes) that fall within the CSF Supply Chain Risk Management category provide the basis for developing processes and procedures for managing supply chain risk. These risks include insertion of counterfeits, unauthorized production, malicious insiders, tampering, theft, and insertion of malicious software and hardware, as well as poor manufacturing and development practices in the cyber supply chain. These risks must be identified, assessed, and managed. The CSF category also addresses supplier and third-party partner contracts,

assessments, evaluations, and response and recovery planning.

2593 Additionally, organizations should investigate SBOMs and distributed ledger (e.g., blockchain)

2594 technologies to support supply chain risk management. For example, SBOM information can

2595 identify software components and the relationships or dependencies on other components.

2596 Having this information available can help an organization determine if a device is affected by

2597 reported software vulnerabilities.

Supplemental guidance for Supply Chain Risk Management can be found in the followingdocuments:

- 2600 INIST SP 800-161, <u>Supply Chain Risk Management Practices for Federal Information</u>
 2601 <u>Systems and Organizations</u>
- 2602 NISTIR 8276, Key Practices in Cyber Supply Chain Risk Management: Observations from 2603 Industry

OT-Specific Recommendations and Guidance

Organizations should consider documenting and tracking serial numbers, checksums, digital certificates/signatures, or other identifying features that can allow determining the authenticity of vendor-provided OT hardware, software, and firmware. Organizations should also consider if OT is purchased directly from the original equipment manufacturer (OEM) or an authorized third-party distributor or reseller. Suppliers should be assessed or reviewed to ensure that they continue to follow best practices.

Many OT components and devices utilize open-source libraries to support their functional capabilities. Organizations should identify the open-source dependencies for their OT components and establish monitoring for open-source information such as vendor websites or cyber news sources to ensure no known vulnerabilities or counterfeits have been disclosed. Additionally, organizations might consider utilizing an industry-recognized certification process for OT products to support supply chain risk management.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

2605 6.2 Protect (PR)

2606 6.2.1 Identity Management and Access Control (PR.AC)

Identity Management and Access Control (PR.AC) identifies outcomes around establishing and
 managing the identification mechanisms and credentials for users, devices, and services. Identity
 management supports the cybersecurity principle to identify and authorize a person, process, or

2610 device before granting physical or logical access to resources such as the system, information, or

2611 location being protected positively and uniquely. Access controls represent the policies,

2612 processes, and technology for specifying the use of system resources by only authorized users,

2613 programs, processes, or other systems. PR.AC controls allow organizations to manage the logical 2614 and physical access to support system risk management requirements.

2615 Supplemental guidance for implementing identity management and access control outcomes can 2616 be found in the following documents:

- 2617 INIST SP 800-63-3, *Digital Identity Guidelines*
- 2618 NIST SP 800-73-4, *Interfaces for Personal Identity Verification*
- 2619 NIST SP 800-76-2, *Biometric Specifications for Personal Identity Verification*
- 2620 NIST SP 800-100, *Information Security Handbook: A Guide for Managers*

OT-Specific Recommendations and Guidance

Organizations should consider the life cycle for managing OT credentials including issuance, revocation, and updates across the OT environment.

Organizations should consider the centralization of identification and authentication for users, devices, and processes within the OT environments to improve/reduce burden account management and enhance monitoring capabilities. Common network technologies such as Active Directory and, more generally, Lightweight Directory Access Protocol (LDAP) or similar technologies can be utilized to support centralization of identity management across environments. If authenticated accounts from the IT environment have access within the OT environment, organizations should weigh the increased risk from permitting that versus the benefits of using centralized accounts.

In situations where OT cannot support authentication, or the organization determines it is not advisable due to adverse impacts on performance, safety, or reliability, the organization should select compensating countermeasures, such as use of physical security (e.g., control center keycard access for authorized users) to provide an equivalent security capability or level of protection for the OT. This guidance also applies to the use of session lock and session termination in an OT.

A unique challenge in OT is the need for immediate access to an HMI in emergency situations. The time needed to enter a user's credentials may impede response or intervention by the operator, resulting in negative consequences to safety, health, or the environment.

2621 6.2.1.1 Logical Access Controls (PR.AC)

2622 Logical access controls restrict logical access to systems, data, and networks of the organization.

ACLs are sometimes used to support logical access controls. An ACL is one or more rules for

determining whether an access request should be granted or denied; they are used to support the

2625 principle of least functionality and control access to restricted areas. They are commonly used

with isolation technologies such as firewalls where an ACL might specify the source,

- destination, and protocol allowed through the isolation device to or from the protected network
- 2628 segment. An ACL may also be used for physical or logical access to areas or information such as
- 2629 network file shares, databases, or other data repositories and applications.
- 2630 Another technology for supporting logical access controls is called Role-Based Access Control
- 2631 (RBAC). RBAC is a technology that has the potential to reduce the complexity and cost of
- 2632 security administration in networks with large numbers of intelligent devices. RBAC is built on

the principle that employees change roles and responsibilities more frequently than the duties

2634 within roles and responsibilities. Under RBAC, security administration is simplified using roles,

2635 hierarchies, and constraints to organize user access levels.

2636 Additionally, Attribute-Based Access Control (ABAC) is an access control approach in which

2637 access is determined based on attributes associated with subjects (requesters) and the objects

2638 being accessed. Each object and subject have a set of associated attributes, such as location, time

2639 of creation, access rights, etc. Access to an object is authorized or denied depending upon

2640 whether the required (e.g., policy-defined) correlation can be made between the attributes of that

2641 object and of the requesting subject.

For federal employees and contractors, Personal Identity Verification (PIV), used in accordance with FIPS 201, may be required to achieve access control. Organizations may also consider one or more of these techniques when determining how to support local access controls within their environments. Supplemental guidance for access controls can be found in the following documents:

- 2647 NIST SP 800-63-3, *Digital Identity Guidelines*
- 2648 NIST SP 800-73-4, *Interfaces for Personal Identity Verification*
- 2649 NIST SP 800-76-2, *Biometric Specifications for Personal Identity Verification*
- 2650 NIST SP 800-78-4, <u>Cryptographic Algorithms and Key Sizes for Personal Identity</u>
 2651 <u>Verification</u>
- 2652 NIST SP 800-96, *<u>PIV Card to Reader Interoperability Guidelines</u>*
- 2653 NIST SP 800-97, *Establishing Wireless Robust Security Networks: A Guide to IEEE 802.11i*
- 2654 NIST SP 800-162, <u>Guide to Attribute Based Access Control (ABAC) Definition and</u>
 2655 <u>Considerations</u>

Organizations should consider the following:

- Some logical access controls such as RBAC support the principle of least privilege and separation of duties by providing a uniform means to manage access to OT devices while reducing the cost of maintaining individual device access levels and minimizing errors. These logical access controls can also restrict OT user privileges to only those required to perform each person's job (i.e., configuring each role based on the principle of least privilege). The level of access can take several forms, including viewing, using, and altering specific OT data or device functions.
- Implement solutions that provide credential management, authentication and authorization, and system use monitoring technical capabilities. These technologies may help manage risks associated with OT devices and protocols by providing a secure platform to allow authorized personnel to access the OT devices.
- Access control systems that verify the identity of the individual, process, or device before granting access should be designed to minimize latency or delays in processing OT system access or commands.
- Implementing highly reliable systems that do not interfere with the routine or emergency duties of OT personnel. Solutions should be designed to reduce the impact of determining identity and authorization on OT operations and safety.

2656

To support access controls, an organization is not limited to a single access control approach. In some cases, applying different access control techniques to different zones based on criticality, safety, and operational requirements is more efficient and effective. For example, ACLs on network zone firewalls combined with RBAC on engineering workstations and servers, plus ABAC integrated into physical security to sensitive areas may achieve the risk-based access control requirements for an organization.

2663 6.2.1.2 Physical Access Controls (PR.AC-2)

Physical security controls are any physical measures that limit physical access to assets. These
measures are employed to prevent many types of undesirable effects including unauthorized
physical access to sensitive locations; unauthorized introduction of new systems, infrastructure,
communications interfaces, or removable media; and unauthorized disruption of the physical
process. Physical access controls include controls for managing and monitoring physical access,
maintaining logs, and handling visitors.

- 2670 Deployment of physical security controls is often subject to environmental, safety, regulatory,
- 2671 legal, and other requirements that must be identified and addressed specific to a given
- 2672 environment. Physical security controls may be broadly applied or could be specific to certain
- assets.

2674 Initial layers of physical access control are often determined based on the risk of access to the

2675 overall facility, not just OT components. Some regulations, such as NERC CIP-006-5 (Physical

2676 Security of BES Cyber Systems) or from the Nuclear Regulatory Commission (NRC), may also

2677 determine the strength and quantity of barriers used for the physical protection of a facility.

OT-Specific Recommendations and Guidance

- The physical protection of the cyber components and data associated with OT must be addressed as part of the overall security for OT environments. Security at many OT facilities is closely tied to operational safety. A primary goal is to keep personnel out of hazardous situations without preventing them from doing their jobs or carrying out emergency procedures.
- Physical access controls are often applied to the OT environment as compensating controls when legacy systems do not support modern IT logical access controls (e.g., an asset could be locked in a cabinet when the USB port or power button cannot be logically disabled). When implementing these mitigations, organizations should consider if the OT component being protected can be compromised using a wireless or network connection that might bypass the physical security controls.

A defense-in-depth solution to physical security should consider the following attributes:

- Protection of Physical Locations. Classic physical security considerations typically include an architecture of layered security measures creating several physical barriers around buildings, facilities, rooms, equipment, or other informational assets. Physical security controls should be implemented to protect physical locations and may include fences, anti-vehicle ditches, earthen mounds, walls, reinforced barricades, gates, door and cabinet locks, guards, or other measures.
- Physical Access Control. Equipment cabinets should be locked when not required for operation or safety, and wiring should be neat and within cabinets or under floors. Additionally, consider keeping all computing and networking equipment in secured areas. Keys of OT assets like PLCs and safety systems should be in the "Run" position at all times unless they are being actively programmed.
- Access Monitoring Systems. Access monitoring systems include electronic surveillance capabilities such as still and video cameras, sensors, and identification systems (e.g., badge readers, biometric scanners, electronic keypads). Such devices typically do not prevent access to a particular location; rather, they store and record either the physical presence or the lack of physical presence of individuals, vehicles, animals, or other physical entities. Adequate lighting should be provided based on the type of access monitoring device deployed. These systems can also sometimes alert or initiate action upon detection of unauthorized access.
- People and Asset Tracking. Locating people and vehicles in a facility can be important for safety reasons, and it is increasingly important for security reasons as well. Asset location technologies can be used to track the movements of people and vehicles to ensure

that they stay in authorized areas, to identify personnel needing assistance, and to support emergency response.

The following are additional physical security considerations:

- Portable Devices. Organizations should apply a verification process that includes, at a minimum, scanning devices (e.g., laptops, USB storage, etc.) for malicious code prior to allowing the device to be connected to OT devices or networks.
- Cabling. Unshielded twisted pair communications cable, while acceptable for the office environment, may not be suitable for some OT environment due to its susceptibility to interference from magnetic fields, radio waves, temperature extremes, moisture, dust, and vibration. Organizations should consider using alternative cabling or shielding that provides suitable protection against environmental threats. Additionally, organizations should consider color-coded cables, connectors, and conduits in addition to labeling to clearly delineate OT and IT network segments and reduce the risk of potential cross-connections.
- Control Centers / Control Rooms. Providing physical security for control centers/control rooms is recommended to reduce the potential of many threats including unauthorized access. The access to these areas should be limited to authorized personnel due to the increased probability of finding sensitive servers, network components, control systems, and consoles for supporting continuous monitoring and rapid response. Gaining physical access to a control room or OT system components often implies gaining logical access to the system or system components. In extreme cases, organizations may need to consider designing control center/control rooms to be blast-proof, or to provide an offsite emergency control center/control room so that control can be maintained if the primary control center/control room becomes uninhabitable.

2678

2679 6.2.1.3 Network Segmentation and Isolation (PR.AC-5)

As discussed in Section 5, a common architecture for supporting a defense-in-depth

2681 cybersecurity approach involves the use of network segmentation or zoning to organize devices

2682 by location or function. Network segmentation is typically implemented physically using

2683 different network switches or logically using Virtual Local Area Network (VLAN)

- 2684 configurations. When properly configured, network segmentation supports enforcing security
- 2685 policies and segmented traffic at the Ethernet layer and facilitates network isolation.

For network isolation, organizations typically utilize their mapped data flows to identify required communications between segments. Network isolation devices such as gateways (including unidirectional gateways or data-diodes) and firewalls are then configured to enforce these communication restrictions by monitoring all communication traffic and only permitting

2690 communication between segments that has been explicitly authorized.

- 2692 Supplemental guidance for access controls can be found in the following documents:
- 2693 INIST SP 800-41 Rev. 1, *Guidelines on Firewalls and Firewall Policy*
- 2694 NIST SP 800-207, Zero Trust Architecture
- 2695 NIST SP 1800-15, <u>Securing Small-Business and Home Internet of Things (IoT) Devices:</u>
 2696 <u>Mitigating Network-Based Attacks Using Manufacturer Usage Description (MUD)</u>

The use of network segmentation and isolation should support an organization's OT cybersecurity defense in depth architecture, as described in Section 5.

While VLANs can be a cost-effective solution for OT network segmentation, organizations should consider utilizing physically separate switches for segmenting high-criticality devices such as those supporting safety systems.

When configuring network isolation devices, organizations may find it difficult to determine which network traffic is necessary for proper OT operations. In these situations, organizations might consider temporarily allowing and recording all communication between the network segments. This can provide reviewable logs to identify and document authorized communication for implementing network isolation rules. Additionally, this activity might also reveal previously unknown or undocumented communication that needs to be reviewed by the organization.

Organizations should also consider whether regulatory requirements stipulate the type of network isolation devices required for OT environments or specific network segments. If organizations choose to utilize firewalls for supporting network isolation, modern firewalls such as stateful and deep packet inspection devices and devices specifically designed to support OT environments should be considered. Organizations should enforce a deny-all, permit-by-exception policy where possible and also review the Centre for the Protection of National Infrastructure's (CPNI) *Firewall Deployment for SCADA and Process Control Networks: Good Practice Guide* to assist with their firewall implementations.

Organizations should keep in mind that network isolation devices might not protect against all network-based risks. For example, network isolation does not mitigate risks associated with lateral movement within a network segment such as the propagation of a worm or other malicious code. Additionally, some IT protocols and many industrial communications protocols have known security vulnerabilities which might be exploitable through network isolation devices. Organizations should consider limiting the flow of insecure protocols, restricting information flow to be unidirectional, and utilizing secure and authenticated protocols for supporting information exchange between the OT environment and other network segments.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

2698 6.2.1.4 User, Device, and Asset Authentication (PR.AC-7)

2699 6.2.1.4.1 Physical Token Authentication

The primary vulnerability that physical token authentication addresses is easily duplicating a secret code or sharing it with others. It eliminates the all-too-common scenario of a password to a "secure" system being on the wall next to a PC or operator station. The security token cannot be duplicated without special access to equipment and supplies.

A second benefit is that the secret within a physical token can be very large, physically secure, and randomly generated. Because it is embedded in metal or silicon, it does not have the same risks that manually entered passwords do. If a security token is lost or stolen, the token owner is aware of the missing token and can notify security personnel to disable access. Traditional passwords can become lost or stolen without notice, leaving credentials more vulnerable to exploitation.

- 2710 Common forms of physical/token authentication include:
- 2711 Traditional physical lock and keys
- 2712 Security cards (e.g., magnetic, smart chip, optical coding)
- 2713 Radio frequency devices in the form of cards, key fobs, or mounted tags
- Dongles with secure encryption keys that attach to the USB, serial, or parallel ports of computers
- 2716 One-time authentication code generators (e.g., key fobs)

2717 For single-factor authentication with a physical token, the largest weakness is that physically

2718 holding the token means access is granted (e.g., anyone finding a set of lost keys now has access

to whatever they open). Physical token authentication is more secure when combined with a

second form of authentication, such as a memorized PIN used along with the token.

2721 When token-based access control employs cryptographic verification, the access control system

should conform to the requirements of NIST SP 800-78 [SP800-78].

2723 **6.2.1.4.2** Biometric Authentication

2724 Biometric authentication enhances software-only solutions, such as password authentication, by

- offering an additional authentication factor and removing the need for people to memorize
- 2726 complex secrets. In addition, because biometric characteristics are unique to a given individual,
- biometric authentication addresses the issues of lost or stolen physical tokens and smart cards.
 Biometric devices make a useful secondary check versus other forms of authentication that can
- Biometric devices make a useful secondary check versus other forms of authentication that car
 become lost or borrowed. Using biometric authentication in combination with token-based
- access control or badge-operated employee time clocks increases the security level.
- 2731
- 2732

- 2733 Noted issues with biometric authentication include:
- Distinguishing a real object from a fake (e.g., how to distinguish a real human finger from a silicon-rubber cast of one or a real human voice from a recorded one).
- Generating type-I and type-II errors (the probability of rejecting a valid biometric image, and the probability of accepting an invalid biometric image, respectively). Biometric authentication devices should be configured to the lowest crossover between these two probabilities, also known as the crossover error rate.
- Handling environmental factors such as temperature and humidity to which some biometric devices are sensitive.
- Addressing industrial applications where employees may have on safety glasses and/or gloves and industrial chemicals may impact biometric scanners.
- Retraining biometric scanners that occasionally "drift" over time. Human biometric traits
 may also shift over time, necessitating periodic scanner retraining.
- Requiring face-to-face technical support and verification for device training, unlike a
 password that can be given over a phone or an access card that can be handed out by a
 receptionist.
- Denying needed access to the OT system because of a temporary inability of the sensing device to acknowledge a legitimate user.
- Being socially acceptable. Users consider some biometric authentication devices more
 acceptable than others. For example, retinal scans may be considered very low on the scale of
 acceptability, while thumbprint scanners may be considered high on the scale of
 acceptability. Users of biometric authentication devices will need to take social acceptability
 for their target group into consideration when selecting among biometric authentication
 technologies.
- When token-based access control employs biometric verification, the access control system should conform to the requirements of NIST SP 800-76 [SP800-76].

While biometrics can provide a valuable authentication mechanism, organizations may need to carefully assess this technology for use with industrial applications. Physical and environmental issues within OT environments may decrease the reliability of biometric authorized authentication. Organizations may need to coordinate with system vendors or manufacturers regarding their specific physical and environmental properties and biometric authentication requirements.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

2760 **6.2.1.4.3** Smart Card Authentication

Smart cards come in a variety of form factors, from USB devices to embedded chips on cards
about the size of credit cards that can be printed and embossed. Smart cards can be customized,
individualized, and issued in-house or outsourced to service providers who could issue hundreds
of thousands per day. Smart cards enhance software-only solutions, such as password
authentication, by offering an additional authentication factor and removing the human element
in memorizing complex secrets by:

- Isolating security-critical computations involving authentication, digital signatures, and key
 exchange from other parts of the system that do not have a need to know
- Enabling portability of credentials and other private information between computer systems
- Providing tamper-resistant storage for protecting private keys and other forms of personal
 information
- 2772 Most issues regarding the use of smart cards are logistical and focus on issuing cards,
- 2773 particularly to replace lost or stolen cards.

OT-Specific Recommendations and Guidance

Although smart cards offer useful functionality, in an OT context their implementation must consider the overall security context of the OT environment. The necessary identification of individuals, issuance of cards, revocation if compromise is suspected, and the assignment of authorizations to authenticated identities represents a significant initial and ongoing challenge. In some cases, corporate IT or other resources may be available to assist in the deployment of smart cards and the required public key infrastructures. Organizations should also consider the impact on OT operational capability if dependency on IT systems and services are required to support the smart card technology.

Additionally, if smart cards are implemented in an OT setting, organizations should consider provisions for management of lost or damaged cards, the costs to incorporate and sustain a respective access control system, and a management process for card distribution and retrieval. These procedures should take into consideration the ability to grant temporary access to OT personnel to prevent operational or safety disruptions.

A common approach in the Federal Government is based on the standardization on Federal PIV smart cards allowing organizations to use the same credential mechanism in multiple applications with one to three factors for authentication (Card-Only, Card+PIN, Card+PIN+Biometric) depending on the risk-level of the resource being protected. If the Federal PIV is used as an identification token, the access control system should conform to the requirements of FIPS 201 [FIPS201] and NIST SP 800-73 [SP800-73] and employ either cryptographic verification or biometric verification.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

2775 6.2.1.4.4 Multi-Factor Authentication

2776 Organizations should consider that there are several possible factors for determining the

authenticity of a person, device, or system, including something you know, something you have 2777

or something you are. When two or more factors are used, the process is known generically as 2778

2779 multi-factor authentication (MFA). In general, the more factors that are used in the

2780 authentication process, the more robust the process. For example, authentication could be based 2781 on something known (e.g., PIN number or password), something possessed (e.g., key, dongle,

- smart card), or something you are such as a biological characteristic (e.g., fingerprint, retinal 2782
- 2783 signature).

OT-Specific Recommendations and Guidance

Organizations need to consider whether MFA is required for protecting OT environments in whole or in part. MFA is an accepted best practice for remote access to OT applications. When determining the placement and usage of MFA within an OT environment, organizations may need to consider different authentication scenarios since some OT components support only a single factor or no authentication. Organizations may consider adjusting credential requirements based on the type of access or other mitigating factors for the environment. For example, remote access to the OT environment may require MFA, while local access may only require user ID and password due to other mitigating factors, such as physical access controls before gaining physical access to the area where the user ID and password may be used.

2784

2785 6.2.1.4.5 Password Authentication

2786 While password authentication schemes are arguably the most common and simplest form of

2787 authentication, numerous vulnerabilities are associated with the use and reliance on passwordonly authentication. For example, systems are often delivered with default passwords that can be 2788

2789 easily guessed, discovered, or researched. Another weakness is the ease of third-party

- 2790 eavesdropping. Passwords typed at a keyboard can be visually observed by others or recorded
- 2791 using keystroke loggers.

2792 Some network services and protocols transmit passwords as plaintext (unencrypted), allowing 2793 any network capture tool to expose the passwords. Additionally, passwords may be shared and 2794 not changed frequently. The use of shared credentials, including shared passwords, limits the 2795 ability to positively identify the individual person, process, or device that accessed a protected 2796 resource. Defense-in-depth is often utilized to prevent password authentication from being the 2797 only control in place to prevent unauthorized modification.

OT-Specific Recommendations and Guidance

Many OT systems do not offer password recovery mechanisms, so the secure and reliable handling of passwords is critical to maintaining continuous operation. Organizations are encouraged to change the default password on OT equipment to make it more difficult for an adversary to guess the password. Once changed, the password needs to be made available to

those that need to know. Organizations may want to consider using a password management tool that is secure and accessible by those that need to know.

Some OT OSs make setting secure passwords difficult, as the password size is smaller than current password standards and the system allows only group passwords at each level of access, not individual passwords. Some industrial (and Internet) protocols transmit passwords in plaintext, making them susceptible to interception. In cases where this practice cannot be avoided, it is important that users have different (and unrelated) passwords for use with encrypted and non-encrypted protocols.

Additionally, special considerations may be required when applying policies based on login password authentication within the OT environment. Without an exclusion list based on machine identification (ID), non-operator logon can result in policies such as auto-logoff timeout and administrator password replacement being pushed down, and that can be detrimental to the operation of the OT system.

The following are general recommendations and considerations with regards to the use of passwords.

- Change all default passwords in OT components.
- Passwords should have appropriate length, strength, and complexity balanced between security and operational ease of access within the capabilities of the software and underlying OS.
- Passwords should not be able to be found in a dictionary or contain predictable sequences of numbers or letters.
- Passwords should be used with care on specialized OT devices such as control consoles on critical processes. Using passwords on these consoles could introduce potential safety issues if operators are locked out or delayed access during critical events. Organizations should consider physical or network isolation for devices where password protection is not recommended.
- Copies of shared or master passwords must be stored in a secure location with limited access that can also be accessed in an emergency. Organizations may also need to consider procedures to periodically change passwords when a password is compromised or an individual with access leaves the organization.
- Privileged (administrative) account passwords require additional protection such as stronger password requirements, more frequent changing, and additional physical safeguards.
- Passwords should not be sent across any network unless protected by some form of FIPSapproved encryption or salted cryptographic hash specifically designed to prevent replay attacks.

2799 6.2.2 Awareness and Training (PR.AT)

- The Awareness and Training category provides policy and procedures for ensuring that all usersare provided basic cybersecurity awareness and training.
- 2802 Supplemental guidance can be found in the following documents:
- 2803 INIST SP 800-50, <u>Building an Information Technology Security Awareness and Training</u>
 2804 <u>Program</u>
- 2805 INIST SP 800-100, Information Security Handbook: A Guide for Managers
- 2806 NIST SP 800-181 Rev. 1, *Workforce Framework for Cybersecurity (NICE Framework)*
- 2807 **OT-Specific Recommendations and Guidance**

Personnel should receive OT-specific security awareness and training for the environment and
specific applications. In addition, organizations identify, document, and train all personnel
having significant OT roles and responsibilities. Awareness and training should cover the
physical process being controlled as well as the OT system.

2812 Security awareness is a critical part of OT incident prevention, particularly when it comes to
2813 social engineering threats. Social engineering is a technique used to manipulate individuals into
2814 giving away private information, such as passwords. This information can then be used to
2815 compromise otherwise secure systems.

2816 OT security-specific awareness and training programs could include: a basic understanding of 2817 social engineering techniques and identifying anomalous behavior in the OT environment, guidance on when and how to connect and disconnect the OT environment from external security 2818 domains, password complexity and management requirements, and reporting practices. All 2819 2820 personnel with OT responsibility should be provided training, but the training may be tailored based on roles and responsibilities. Roles to consider in the training program could include 2821 2822 senior executives, privileged account users, third-party providers, physical security personnel, 2823 control engineers, operators, and maintainers.

2824 6.2.3 Data Security (PR.DS)

Providing data security includes protecting the confidentiality, integrity, and availability of dataat-rest and data-in-transit, protecting assets after removal, and preventing data leaks.

2827 Use of cryptography can support data security requirements. Encryption, digital signatures,

- 2828 hashing, and other cryptographic functions are available to prevent unauthorized access or
- 2829 modification of data at rest and in transit [RFC4949]. When cryptography is selected,
- 2830 organizations should use a certified cryptographic system. Federal organizations are required to
- 2831 comply with FIPS 140-3 [FIPS140] and the Cryptographic Module Validation Program (CMVP).
- 2832 Additionally, cryptographic hardware should be protected from physical tampering and
- 2833 uncontrolled electronic connections.
- 2834 Supplemental guidance for data security can be found in the following documents:

- 2835 INIST SP 800-47 Rev. 1, *Managing the Security of Information Exchanges*
- 2836 INIST SP 800-111, *Guide to Storage Encryption Technologies for End User Devices*
- 2837 INIST SP 800-209, <u>Security Guidelines for Storage Infrastructure</u>

Identify critical file types and data to protect (both physical and electronic) while at rest. This may include personally identifiable information and sensitive, proprietary, or trade secret information (e.g., PLC program code, robot programs, computer aided drafting/computer aided manufacturing files, operating manuals and documentation, electrical diagrams, network diagrams, historical production data [NISTIR 8183]). Organizations should consider centralizing critical data within secure storage locations.

When OT data is stored in the cloud or vendor servers, organizations should consider performing a risk analysis to determine how the data is protected by the service provider and if additional countermeasures should be implemented to manage risk to an acceptable level.

Information flows from the OT security domain to other security domains, and connections between security domains are monitored. Technologies such as data diodes, firewalls, and ACLs can be used to restrict the information flow. Examples of critical interfaces and interconnections may include interfaces between IT and OT, OT and external industry partners, or OT and third-party support vendors.

To protect data on system components at end-of-life, an asset disposal program should be implemented, including consideration for wiping, sanitizing, or otherwise destroying critical data and media prior to disposal. The asset disposal program should include any removeable media and mobile devices as well as traditional OT hardware.

Cryptography

Critical OT data should be protected while in transit, especially over third-party network segments and other untrusted or vulnerable network paths (e.g., cellular, wireless, Internet, WAN). First identify which data is critical, then implement cryptographic mechanisms (e.g., encryption) to prevent unauthorized access or modification of system data and audit records. Encryption provides a mechanism for ensuring confidentiality and integrity for data in transit.

OT applications often focus on availability of data. Before deploying encryption in OT, ensure that confidentiality or integrity is the goal of applying the security control. The use of encryption within an OT environment could introduce communications latency due to the additional time and computing resources required to encrypt, decrypt, and authenticate each message. Degradation of performance of the end device or system caused by encryption, or any other security technique, should be considered. Before deploying encryption within an OT environment, solutions should be tested to determine if latency is acceptable for the application. Encryption at OSI Layer 2 rather than Layer 3 may be implemented to help reduce encryption latency.

Additionally, while encryption provides confidentiality between encryption/decryption devices, anomaly detection tools supporting OT environments may not be able to read encrypted data. Encryption should therefore be carefully planned and implemented to manage operational risks.

Organizations should also consider that cryptography may introduce key management issues. Sound security policies require key management processes, which can become more difficult as the geographic size of the OT increases. Because site visits to change or manage keys can be costly and slow, organizations should consider if cryptographic protection with remote key management may be beneficial, such as when the units being protected are so numerous or geographically dispersed that managing keys is difficult or expensive.

For OT, encryption can be deployed as part of a comprehensive, enforced security policy. A cryptographic key should be long enough so that guessing it or determining it through analysis takes more effort, time, and cost than the value of the protected asset.

2838

2839 6.2.4 Information Protection Processes and Procedures (PR.IP)

Policies, processes, and procedures should be maintained and used to manage protection of information systems and assets. Countermeasures and outcomes should be in place to manage configuration changes throughout the life cycle of the component and system. Backups should be maintained, and response and recovery plans should be prepared and tested. A plan should be developed and implemented for vulnerability management throughout the life cycle of the components.

2846 **6.2.4.1 Least Functionality (PR.IP-1)**

The principle of least functionality entails configuring systems to only provide essential
functions and services. Some of the functions and services routinely provided by default may not
be necessary to support essential organizational missions, functions, or operations. These
functions include network ports and protocols, software, and services.

- 2851 Supplemental guidance can be found in the following document:
- 2852 NIST SP 800-167, *Guide to Application Whitelisting*

OT-Specific Recommendations and Guidance

Systems and devices in the OT environment include many functions and services that may not be necessary for their proper operation, some of which may be enabled by default and without knowledge of the organization. Any functions or services that are not required for proper operation should be disabled to reduce exposure.

Care should be taken when disabling these functions and services, as unintended impacts may result if a critical function or service is unknowingly disabled (e.g., disabling all external

communications to a PLC may also disable the ability to communicate with associated HMIs). Devices should be subjected to extensive testing before being deployed to the OT network.

2853

2854 6.2.4.2 Configuration Change Control (Configuration Management) (PR.IP-3)

2855 Configuration management helps ensure that systems are deployed and maintained in a secure 2856 and consistent state, allowing organizations to reduce risks from outages due to configuration 2857 issues and security breaches through improved visibility and tracking of changes to the system. 2858 In addition, configuration management can detect improper configurations before they 2859 negatively impact performance, safety, or security. Configuration management tools enable an 2860 asset owner to establish and maintain the integrity of system hardware and software components 2861 by controlling processes for initializing, changing, monitoring, and auditing the configurations of

the components throughout the system life cycle.

- 2863 Supplemental guidance for configuration management can be found in the following documents:
- 2864 NIST SP 800-128, <u>Guide for Security-Focused Configuration Management of Information</u>
 2865 <u>Systems</u>
- 2866 NIST SP 1800-5, *<u>IT Asset Management</u>*

OT-Specific Recommendations and Guidance

Organizations should document the approved baseline configuration for their OT devices. Additionally, organizations should establish the system development life cycle (SDLC) approach to document, test, and approve changes before deploying to the OT environment.

Some organizations may maintain logbooks or other similar methods to document changes to OT components. Organizations should consider centralizing the tracking and documentation of changes to the OT environment to improve visibility and ensure proper testing and approvals for system changes. Such a process may allow organizations to prevent accidental reconfiguration or identify intentional reconfiguration of components to unapproved or untested versions.

In some cases, the use of automated configuration management tools might be appropriate. Processes should be in place to validate configurations prior to deployment. Many changes to OT can be made only during scheduled maintenance downtimes to minimize impacts. When considering automated configuration management tools, organizations should consider potential impact to the OT system. In some cases, these tools transfer numerous types of data over the manufacturing system network, and potentially large amounts of data. Additionally, some tools may also have the potential to impact OT system operations by attempting to change device configurations or manipulating active files.

2868 **6.2.4.3 Backups (PR.IP-4)**

- 2869 Conducting, maintaining, and testing backups is a critical outcome for the recovery process if a 2870 cyber or reliability incident occurs.
- 2871 Supplemental guidance for determining priority and strategy for backups can be found in the 2872 following documents:
- 2873 INIST SP 800-34 Rev. 1, <u>Contingency Planning Guide for Federal Information Systems</u>
- 2874 NIST SP 800-209, <u>Security Guidelines for Storage Infrastructure</u>

OT-Specific Recommendations and Guidance

A list should be developed of all backups maintained, including installation media, license keys, and configuration information. Additional measures should be taken to ensure that backups are readily available when needed:

- Verify the backups for reliability and integrity (if technically possible).
- Establish an onsite location for backups that is accessible to all personnel who may need access during a recovery event.
- Establish an alternative secondary storage location for additional copies of backups to ensure that the same incident that disrupts primary data cannot modify or destroy the backup (e.g., store PLC logic and configuration files at an offsite, geographically diverse location that cannot be destroyed by the same [hurricane, wildfire, tornado] that may destroy the PLC).
- Include testing of restoration process from backup data as part of contingency plan testing.
- Ensure backup procedures are included in configuration or change management processes.
- Secure backups according to access control requirements.
- Monitor environmental conditions where backup media is stored.

2875

2876 6.2.4.4 Physical Operating Environment (PR.IP-5)

2877 Managing the physical operating environment includes emergency protection controls such as

emergency shutdown of the system, backup for power and lighting, controls for temperature and
 humidity, and protection against fire and water damage. Organizations should develop policies

and procedures to ensure that environmental operating requirements for assets are achieved.

Organizations should consider the following factors when identifying potential countermeasures to implement to protect the physical operating environment:

- Environmental Factors. Environmental factors can be important. For example, if a site is dusty, systems should be placed in a filtered environment. This is particularly important if the dust is likely to be conductive or magnetic, as in the case of sites that process coal or iron. If vibration is likely to be a problem, systems should be mounted on rubber bushings to prevent disk crashes and wiring connection problems. In addition, the environments containing systems and media (e.g., backup tapes, floppy disks) should have stable temperature and humidity. An alarm to the OT system should be generated when environmental specifications such as temperature or humidity are exceeded.
- Environmental Control Systems. HVAC systems for control rooms must support OT personnel during normal operation and emergency situations, which could include the release of toxic substances. Risk assessments should consider the risk of operating an HVAC system (e.g., air intakes) in an occupied shelter during a toxic release, as well as continued operation during a power outage (e.g., using an uninterruptible power supply in critical environments).

Fire systems must be carefully designed to avoid causing more harm than good (e.g., to avoid mixing water with incompatible products). HVAC and fire systems have significantly increased roles in security that arise from the interdependence of process control and security. For example, fire prevention and HVAC systems that support industrial control computers need to be protected against cyber incidents.

Power. Reliable power for OT is essential, so a UPS should be provided for critical systems. If the site has an emergency generator, the UPS battery life may only need to be a few seconds; however, if the site relies on external power, the UPS battery life may need to be hours. It should be sized, at a minimum, so that the system can be shut down safely.

2881

2882
28836.2.4.5
Response and Recovery Plans (PR.IP-9) and Response and Recovery Plan
Testing (PR.IP-10)

2884 Organizations should develop and maintain response plans, including incident response and 2885 business continuity. Response plans should be measured against the service being provided, not just the system that was compromised. Organizations should consider a systematic approach to 2886 2887 response planning, such as the process described in CISA's Cybersecurity Incident and Vulnerability Response Playbooks [CISA-CIVR]. Common planning steps include preparation, 2888 2889 detection and analysis, containment, recovery, post-incident activity, communication, and 2890 coordination. Organizations should also establish a regular review and update for their response 2891 plans.

- 2892 The response plans should be documented in paper form or on an offline system (i.e., air gapped)
- 2893 that cannot be compromised during a cyber-attack. Individuals should be trained on where to
- 2894 find the response plan, along with the actions to take as part of an incident response.
- 2895 Additionally, during the preparation of the incident response plan, input should be obtained from
- 2896 the various stakeholders including operations, engineering, IT, system support vendors,
- management, organized labor, legal, and safety. These stakeholders should also review and 2897
- 2898 approve the plan.
- 2899 Business continuity planning addresses the overall issue of maintaining or reestablishing
- 2900 production in the case of an interruption. An outage may involve typical time spans of days,
- 2901 weeks, or months to recover from a natural disaster, or minutes or hours to recover from a 2902 malware infection or a mechanical/electrical failure. Business continuity plans (BCP) are often
- 2903 written to cover many types of incidents involving several different disciplines. The BCP for
- 2904 cybersecurity incidents should broadly cover long-term outages, including disaster recovery, and
- 2905 short-term outages requiring operational recovery. It is important to work with physical security
- on developing the BCP related to cybersecurity incidents. This collaboration with physical 2906
- 2907 security should include the identification of critical equipment and the associated
- 2908 countermeasures in place to prevent an incident.
- 2909 Before creating a BCP to deal with potential outages, it is important to specify the recovery
- 2910 objectives for the various systems and subsystems involved based on typical business needs.
- 2911 There are two distinct types of objectives: system recovery and data recovery. System recovery
- 2912 involves the recovery of communication links and processing capabilities, and it is usually
- 2913 specified in terms of a Recovery Time Objective (RTO). Management should define the
- 2914 acceptable RTO, and technical personnel should work to achieve that target. Data recovery
- 2915 involves the recovery of data describing production or product conditions in the past and is
- 2916 usually specified in terms of a Recovery Point Objective (RPO). This is defined as the time for 2917 which an absence of data can be tolerated. The RTO and RPO may justify investment in spare
- 2918
 - inventory if recovery objectives cannot be met by other means.
- 2919 Once the recovery objectives are defined, a list of potential interruptions should be created and
- the recovery procedure developed and described. A contingency plan is then created for the 2920
- 2921 variety of potential interruptions. The contingency plan should be reviewed with managers to
- 2922 ensure that the cost to meet the contingency plan is approved. For many smaller-scale
- 2923 interruptions, a critical spares inventory will prove adequate to meet the recovery objectives. For
- 2924 larger-scale recovery, vendor relationships will likely be leveraged. For all types of recovery,
- 2925 backups are critical.
- 2926 A disaster recovery plan (DRP) is a documented process or set of procedures comprising a
- 2927 comprehensive statement of recovery actions to be taken before, during, and after a disaster. The 2928
- DRP is ordinarily documented in both electronic and paper form to ensure it is readily available 2929 during any type of disaster. The disaster could be natural, environmental, or caused by humans,
- 2930 either intentionally or unintentionally. Organizations should develop, maintain, and validate
- 2931 disaster recovery plans for their environments to help minimize an event impact by reducing the
- 2932 time required to restore capabilities.

- 2933 Organizations may already have some emergency response plans and should consider leveraging 2934 existing plans when developing a response plan for cybersecurity events.
- 2935 Supplemental guidance for the response planning can be found in the following documents:
- 2936 NIST SP 800-34 Rev. 1, <u>Contingency Planning Guide for Federal Information Systems</u>
- 2937 NIST SP 800-61 Rev. 2, <u>Computer Security Incident Handling Guide</u>
- 2938 NIST SP 800-83 Rev. 1, *Guide to Malware Incident Prevention and Handling for Desktops* 2939 and Laptops
- 2940 NIST SP 800-100, *Information Security Handbook: A Guide for Managers*
- 2941 CISA Security Tip (ST13-003), *Handling Destructive Malware*
- Federal Emergency Management Agency (FEMA) <u>National Incident Management System</u>
 (NIMS)
- 2944 FEMA <u>National Preparedness Goal</u>

Incident response planning may include the following items:

- Identification and Classification of Incidents. The various types of OT incidents should be identified and classified based on potential impact so that a proper response can be formulated for each potential incident.
- Response Actions. There are several responses that can be taken in the event of an incident. These range from doing nothing to performing a full system shutdown, which could result in a shutdown of the physical process. The response taken will depend on the type of incident and its effect on the OT system and the physical process being controlled. A written plan documenting the response to each type of incident should be prepared. This will provide guidance during times when there might be confusion or stress due to the incident. This plan should include step-by-step actions to be taken by the various organizations. If there are reporting requirements, these should be documented along with contact information and reporting format to reduce confusion.

Response actions should include steps for Detection and Analysis; Containment, Eradication, and Recovery; and Post-Incident Activity. Some considerations for OT may include:

- Determining a priority: either returning to normal operations as quickly as possible, or performing an investigation and preserving forensic data
- Communicating to the incident response team
- Disconnecting infected systems from the network

- Physically isolating operationally independent networks (e.g., enterprise from control or control from safety)
- Transitioning to manual operations
- Resourcing for additional operations support to manually validate data
- Notifying management, public relations, and/or outside companies and agencies as required

If an incident is discovered, organizations should conduct a focused risk assessment on the OT environment to evaluate the effect of both the attack and the options to respond. For example, one possible response option is to physically isolate the system under attack. However, this may have a negative impact on the OT and may not be possible without impacting operational performance or safety. A focused risk assessment should be used to determine the response action.

The plan should also indicate requirements for the timely replacement of components in the case of an emergency. If possible, replacements for hard-to-obtain critical components should be kept in inventory.

The organization should have a means for prioritizing recovery activities. This prioritization may leverage existing documentation such as risk assessments or startup procedures. As an example, the focus may be to recover the systems supporting critical utilities prior to the systems supporting manufacturing based on the order of start-up activities.

Testing recovery plan procedures for OT components could be difficult due to operational and safety requirements. Organizations may need to determine if "bench tests" or other offline testing is possible to confirm the recovery procedures for OT components. Organizations at a minimum should verify the integrity of the backups if a full recovery test cannot be performed.

2945

2946 6.2.5 Maintenance (PR.MA)

The outcomes that fall within the CSF Maintenance Category provide guidance for performing
routine and preventative maintenance on the components of an information system. This includes
the usage of maintenance tools (both local and remote) and management of maintenance
personnel.

OT-Specific Recommendations and Guidance

Maintenance tracking solutions enable an organization to schedule, track, authorize, monitor, and audit maintenance and repair activities to OT, ensuring maintenance logs or changes performed are properly documented. Documenting these events provides an audit trail that can aid in cybersecurity-related troubleshooting, response, and recovery activities.

Maintenance tracking can also provide visibility into scheduled maintenance for OT devices and help inform end-of-life decisions.

Software used for OT maintenance activities should be approved and controlled by the organization. Approved software should be obtained directly from vendors and its authenticity verified (e.g., by validating certificates or comparing hashes of installers).

Any maintenance performed on an OT device can inadvertently modify its configuration, resulting in an increased attack surface. The hardened state of the OT device should be maintained regardless of the maintenance performed. Device configuration should be verified after maintenance and software patching, as some features may have inadvertently been reenabled or new features installed. Best practices and other supporting documents should be obtained from the device vendor to guide and inform maintenance activities.

Limiting the use of certain devices only for maintenance activities can help reduce the chances of device compromise by exposure to external networks, unauthorized users, or theft. Maintenance devices that remain secure within the OT environment reduce their exposure. Using maintenance devices outside the OT environment or connecting the devices to non-OT networks should be restricted or minimized.

Any device connected to the OT system should be disconnected after the maintenance activities are completed, and any temporary connections should be removed.

The operation, capabilities, and features of devices used for maintenance activities should be well understood. Devices may contain wireless radios and other communications devices that may be vulnerable to side-channel attacks or may allow simultaneous connections between networks (i.e., dual-homed). Vendor documentation should be thoroughly reviewed to understand these capabilities.

2951

2952 6.2.6 Protective Technology (PR.PT)

Technical mechanisms assist organizations with protecting the devices and information within their environments. These technologies alone may not be sufficient to sustain the security capabilities as threats evolve and change; as such, organizations should manage the technical solutions securing the organizational assets in a manner consistent with policies, procedures, and agreements.

2958 6.2.6.1 Logging (PR.PT-1)

2959 Logging enables an organization to capture events occurring within its systems and networks.

- Events can be generated by many different systems including OSs, workstations, servers,
- 2961 networking devices, cybersecurity software, and applications.
- 2962 Supplemental guidance can be found in the following document:
- 2963 INIST SP 800-92, *Guide to Computer Security Log Management*

Capturing log events is critical to maintaining situational awareness of the OT system. The typical types of events include maintenance functions (e.g., access control, configuration changes, backup and restore), OS functions, and application (i.e., process) events. The specific types of events available for logging will vary between OT devices and should be chosen based on the capabilities of the device and the desired events to be captured.

To support log correlation, each log entry should include identification of the device that generated the event, the timestamp of the event, and identification of the user or system account that generated the event. In general, each log entry should include where the event occurred, the type of event, when the event occurred, the source of the event, the identity of any users or system accounts related to the event, and the outcome of the event.

Correlating events across multiple OT devices can be difficult if the event timestamps generated by the devices were not informed by a shared time source. The internal clocks of each device should be synchronized with a primary clock to support event correlation between devices. Log entries should also produce a consistent timestamp format (e.g., time zone format, string format, daylight saving).

The collection and event forwarding functions may impact the performance of the OT device. Log size may grow quickly depending on the frequency of events being logged, resulting in increasing space utilization. Disk space and memory is limited on most OT devices, so adequate storage should be provided either locally or remotely to reduce the likelihood of exceeding the device capacity, which could ultimately result in the loss of logging capability. Transferring logs from the OT devices to alternate storage should be considered.

2964

2965 6.2.7 Media Protection (PR.PT-2)

Removable media is protected, and use is restricted in accordance with policy. This includes
labeling media for distribution and handling requirements, as well as storage, transport,
sanitization, destruction, and disposal of the media.

- 2969 Supplemental guidance can be found in the following documents:
- 2970 INIST SP 800-88 Rev. 1, *Guidelines for Media Sanitation*
- 2971 NIST SP 800-100, *Information Security Handbook: A Guide for Managers*
- 2972 NIST SP 800-209, <u>Security Guidelines for Storage Infrastructure</u>

OT-Specific Recommendations and Guidance

Processes and procedures for the handling of media assets should be developed and followed. Media assets include removable media and devices such as floppy disks, CDs, DVDs, SD cards, and USB memory sticks, as well as printed reports and documents. Physical security controls should address specific requirements for the safe and secure maintenance of these assets and provide specific guidance for transporting, handling, and erasing or destroying these assets. Security requirements could include safe storage from loss, fire, theft, unintentional distribution, or environmental damage.

OT devices should be protected against the misuse of media. The use of any unauthorized removable media or device on any node that is part of or connected to the OT should not be permitted. Solutions could be either procedural or technical to prevent the introduction of malware or the inadvertent loss or theft of data.

Physically protecting media or encrypting the data on media is critical to protecting the OT environment. For example, if an adversary gains access to media containing OT data, it could provide valuable information for launching an attack.

2973

2974 6.2.8 Personnel Security

2975 Cybersecurity should be included in human resources practices to reduce the risk of human error, 2976 theft, fraud, or other intentional or unintentional misuse of information systems.

- Supplemental guidance for the Personnel Security controls can be found in the followingdocuments:
- 2979 NIST SP 800-35, *Guide to Information Technology Security Services*
- 2980 INIST SP 800-73-4, *Interfaces for Personal Identity Verification*
- 2981 INIST SP 800-76-2, *Biometric Specifications for Personal Identity Verification*
- 2982 NIST SP 800-100, *Information Security Handbook: A Guide for Managers*

OT-Specific Recommendations and Guidance

A general organization personnel security program should be developed to include policy, position risk designations, personnel screening, terminations and transfers, access agreements, and third-party roles and responsibilities. OT personnel should be in communication with Human Resources, IT, and Physical Security as necessary to ensure personnel security requirements are being met.

An organization should consider establishing an access agreement and request form for managing access (physical and/or logical) to OT equipment. Organizations should also screen personnel assigned to critical positions controlling and maintaining the OT.

Additionally, training programs should be developed to ensure that each employee has received training relevant and necessary to their job functions. Employees should demonstrate competence in their job functions to retain physical and logical access to OT.

Organizations should consider adopting a framework, such as the <u>National Initiative for</u> <u>Cybersecurity Education (NICE) Framework</u>, for training their OT personnel.

2983

2984 6.2.9 Wireless Communications

Wireless communications utilize radio frequency (RF) to support data transmission. This can
include Wireless Fidelity (WiFi) local area network communication based on IEEE 802.11
protocols and may also include cellular or other radio-based communications. RF-based
communications provide enhanced flexibility over traditional physical (wired) communication
capabilities. However, RF communications are also more susceptible to interference and may
also allow eavesdropping by unauthorized personnel.

- 2991 Supplemental guidance for wireless communications can be found in the following documents:
- 2992 NIST SP 800-97, Establishing Wireless Robust Security Networks: A Guide to IEEE 802.11i
- 2993 NIST SP 800-121 Rev. 2, *Guide to Bluetooth Security*
- 2994 NIST SP 800-153, *Guidelines for Securing Wireless Local Area Networks (WLANs)*
- 2995 NIST SP 800-187, *Guide to LTE Security*

OT-Specific Recommendations and Guidance

The use of temporary or permanent wireless communication within an OT is a risk-based decision determined by the organization. Generally, devices utilizing wireless communication should be placed in a separate network segment and only be deployed where the residual risks to health, safety, environmental, and financial implications are low.

Prior to installation, a wireless survey should be performed to determine antenna locations and signal strength to ensure adequate coverage and to minimize exposure of the wireless network to interference from OT environmental factors and eavesdropping. Organizations should consider that attackers typically use directional antennas to extend the effective range of a wireless network beyond the standard range.

Organizations may choose to implement a wireless mesh network to improve resiliency or to eliminate areas with poor signal strength. Mesh networks can provide fault tolerance through alternate route selection and preemptive fail-over of the network. Organizations should also consider the performance and security impacts associated with the use of mesh networks. For example, when roaming between access points, devices may experience temporary communication loss. Roaming may also require different security controls to reduce the transition time. Organizations will need to find the appropriate balance between functional capabilities and cybersecurity to achieve the risk tolerance.

Wireless LANs

- Wireless device communications should be encrypted. The encryption must not degrade the operational performance of the end devices. Encryption at OSI Layer 2 should be considered, rather than at Layer 3, to reduce encryption latency. The use of hardware accelerators to perform cryptographic functions should also be considered.
- Wireless access points should establish independent network segments (not extend an existing segment) and be used in combination with a boundary protection device to restrict and control communication.
- Wireless access points should be configured to have a unique service set identifier (SSID) and enable Media Access Control (MAC) address filtering at a minimum.
- Wireless devices may require different security controls and should be zoned accordingly.
- An adaptive routing protocol should be considered if the devices are to be used for wireless mobility. The convergence time of the network should be as fast as possible supporting rapid network recovery in the event of a failure or power loss.

Wireless Field Networks

When implementing a wireless field network, the following security features should be considered:

- Selecting a standard, non-proprietary protocol (e.g., IEEE 802.15.x)
- Ensuring encryption is used between field instruments and wireless access points
- Allowlisting devices into the wireless device manager so rogue devices cannot connect
- Implementing appropriately complex passwords and join keys

Most wireless field networks are inherently less reliable than their wired counterparts due to their susceptibility to signal jamming, distance limitations, and line-of-sight requirements. Work with the system vendor to design a wireless network appropriate for the application.

2996

2997 6.2.10 Remote Access

When accessing systems or data remotely, security controls should be implemented to prevent unauthorized access to the organization's networks, systems, and data. A virtual private network (VPN) is a set of technologies and protocols designed to support secure remote access to network environments. A VPN can provide both strong authentication and encryption to secure communication data by establishing a private network that operates as an overlay on a public infrastructure. The most common types of VPN technologies implemented today are:

Internet Protocol Security (IPsec). IPsec supports two encryption modes: transport and
 tunnel. Transport mode encrypts only the data portion (payload) of each packet while leaving

the packet header untouched. The more secure tunnel mode adds a new header to each packet
and encrypts both the original header and the payload. On the receiving side, an IPseccompliant device decrypts each packet.

Transport Layer Security (TLS). Sometimes referred to by the legacy terminology of
 Secure Sockets Layer (SSL), TLS provides a secure channel between two machines that
 encrypts the contents of each packet. TLS is most often recognized for securing HTTP
 traffic; this protocol implementation is known as HTTP Secure (HTTPS). However, TLS is
 not limited to HTTP traffic; it can be used to secure many application-layer programs.

- Secure Shell (SSH). SSH is a command interface and protocol for securely gaining access to a remote computer. It is widely used by network administrators to remotely control Linux-based servers. SSH is a secure alternative to a telnet application. SSH is included in most UNIX distributions and is typically added to other platforms through a third-party package.
- 3018 Supplemental guidance for access controls can be found in the following documents:
- 3019 NIST SP 800-52 Rev. 2, <u>Guidelines for the Selection, Configuration, and Use of Transport</u>
 3020 <u>Layer Security (TLS) Implementations</u>
- 3021 NIST SP 800-63B, *Digital Identity Guidelines: Authentication and Lifecycle Management*
- 3022 NIST SP 800-77 Rev. 1, *Guide to IPsec VPNs*
- 3023 NIST SP 800-113, *Guide to SSL VPNs*

OT-Specific Guidance and Recommendations

Many OT security architectures are designed with multiple levels, such as in the Purdue Architecture. This can significantly limit access which can minimize accidental or unauthorized disruptions to operations. A process should be developed and communicated to the organization for requesting and enabling remote access. Remote access should be provided only if justified and limited to only what is required to meet the business need. Remote access should not circumvent or negate safety or security controls.

In critical situations or when vendor support is needed, temporary remote access may be requested to perform maintenance. In such cases, procedures should still be followed to ensure secure connections are being utilized.

There are several different techniques for implementing temporary remote access, including the following:

- Users/protocols (e.g., RDP, SSH) temporarily permitted through the OT/enterprise firewall
- Screen-sharing technologies
- Modems
- VPNs

Regardless of the technology, organizations should consider the following:

- Implementing unique usernames and complex passwords
- Removing, disabling, or modifying any default credentials
- Updating any software/firmware to the latest versions
- Removing access when no longer required. Consider implementing automatic timers for removing access, or the management of change processes to manually confirm removal of access.
- Monitoring remote activities
- Ensuring operations personnel are aware of planned remote activity in the OT environment
- Initiating the connection from the OT environment
- Labeling remote connection devices so that operations may disconnect quickly in the case of unauthorized use

Dial-Up Modems

If dial-up modems are used in OT environments, consider using callback systems. This ensures that a dialer is an authorized user by having the modem establish the working connection based on the dialer's information and a callback number stored in the OT approved authorized user list.

If feasible, disconnect modems when not in use, or consider automating this disconnection process by having modems disconnect after being on for a given amount of time. It should be noted that sometimes modem connections are part of the legal support service agreement with the vendor (e.g., 24x7 support with 15-minute response time). Personnel should be aware that disconnecting/removing the modems may require that contracts be renegotiated.

VPNs

VPN devices used to protect OT systems should be thoroughly tested to verify that the VPN technology is compatible with the application and that implementation of the VPN devices does not negatively impact network traffic characteristics.

VPN technology can also be applied between network segments. For example, a remote site might have a boundary protection device onsite that uses a VPN to establish a secure tunnel over an untrusted network (e.g., the internet) to a VPN-enabled device in the main control center at a different location.

3024 6.2.11 Flaw Remediation and Patch Management

3025 Patches are additional pieces of code that have been developed to address specific problems or

- 3026 flaws in existing software. Vulnerabilities are flaws that can be exploited, enabling unauthorized
- 3027 access to systems or enabling users to have access to greater privileges than authorized.

- 3028 A systematic approach to managing and using software patches can help organizations to
- 3029 improve the overall security of their systems in a cost-effective way. Organizations that actively
- 3030 manage and use software patches can reduce the chances that the vulnerabilities in their systems
- 3031 can be exploited; in addition, they can save time and money that might be spent in responding to
- 3032 vulnerability-related incidents.
- 3033 NIST SP 800-40 Revision 4 [SP800-40] provides guidance for CIOs, CISOs, and others who are
- 3034 responsible for managing organizational risk related to the use of software. This publication
- 3035 frames patching as a critical component of preventive maintenance for computing technologies –
- 3036 a cost of doing business, and a necessary part of what organizations need to do in order to 3037 achieve their missions. This publication also discusses common factors that affect enterprise
- 3038 patch management and recommends creating an enterprise strategy to simplify and
- 3039 operationalize patching while also improving reduction of risk. The guidance may also be useful
- 3040 to business and mission owners, security engineers and architects, system administrators, and
- 3041 security operations personnel.
- 3042 Supplemental guidance for flaw remediation and patch management can be found in the 3043 following document:
- 3044 NIST SP 800-40 Rev. 4, *Guide to Enterprise Patch Management Planning: Preventive* 3045 *Maintenance for Technology*

Significant care should be exercised when applying patches to OS components. Patches should be adequately tested (e.g., offline system testing) to determine the acceptability of any performance impacts. Regression testing is advised. It is not uncommon for patches to have an adverse impact on other software. A patch may remove a vulnerability, but it can also introduce a greater risk from a production or safety perspective. Patching the vulnerability may also change the way the OS or application works with control applications, causing the control application to lose some of its functionality. Many OT systems utilize older versions of OSs that are no longer supported by the vendor; consequently, patches may not be available.

Organizations should implement a systematic, accountable, and documented OT patch management process for managing exposure to vulnerabilities. The patch management process should include guidance on how to monitor for patches, when to apply patches, how to test the patches (e.g., with vendors or on offline systems), and how to select compensating controls to limit exposure of the vulnerable system when patching is delayed.

Many OT vulnerabilities are published to CISA as advisories; however, not all vendors report known vulnerabilities to CISA. Organizations can often stay informed of vulnerabilities by subscribing to vendor-specific notifications in addition to CISA alerts and advisories. Private cybersecurity companies also offer services to assist organizations with staying informed of known vulnerabilities within their OT environment. An organization is responsible for staying informed of its OT vulnerabilities and determining when patches should be applied as part of their documented patch management process.

When and how to deploy patches should be determined by knowledgeable OT personnel. Consider separating the automated process for OT patch management from the automated process for non-OT applications. Patching should be deployed during planned OT outages.

Organizations may be required to follow industry-specific guidance on patch management. Otherwise, they may develop patch management procedures based on existing standards such as NIST SP 800-40 Rev. 4 [SP800-40r4]; NERC CIP-007, <u>Cyber Security - System Security</u> <u>Management System Security Management</u>; or ISA 62443-2-3, <u>Patch Management in the</u> <u>IACS Environment</u>.

3046

3047 6.2.12 Time Synchronization

3048 Time synchronization solutions enable an organization to synchronize time across many devices.

- This is important for many functions including event and log correlation, authentication mechanisms, access control, and quality of service.
- 3051 Supplemental guidance can be found in the following documents:
- 3052 INIST SP 800-92, *Guide to Computer Security Log Management*
- 3053 INISTIR 8323, Foundational PNT Profile: Applying the Cybersecurity Framework for the 3054 Responsible Use of Positioning, Navigation, and Timing (PNT) Services

OT-Specific Recommendations and Guidance

Synchronizing the internal clocks of OT systems and devices is critical for cyber event correlation and other OT functions (e.g., motion control). If a device or system clock is inaccurate, timestamps generated by the clock for event and log entries will also be inaccurate, as well as any other functions that utilize the clock.

A common time should be used across all OT devices. Utilizing multiple time sources can benefit OT devices by reducing clock error and providing backup time sources if the primary time source is lost or time quality of a primary time source has degraded.

Authenticated Network Time Protocol (NTP) and secure Precision Time Protocol (PTP) (i.e., PTP with an authentication TLV [type, length, value]) can be used where there is a risk of malicious modification to the network time (e.g., RF jamming, packet spoofing, denial of service). Non-authenticated NTP is susceptible to spoofing and should be located behind the firewall.

Time sources located in the OT environment should be included in the system and network monitoring programs. If available, logs from each time source (e.g., syslog) should be forwarded to a log collection system.

3055

3056 6.3 Detect (DE)

The Detect function enables the timely discovery of cybersecurity events by ensuring appropriateactivities are developed and implemented.

3059 6.3.1 Anomalies and Events (DE.AE)

3060 Organizations should understand the different events and anomalies and their potential impact to 3061 the systems, organization, and environment to establish an effective detection capability. Within 3062 any environment, numerous non-malicious and potentially malicious events and anomalies occur 3063 almost continuously. Some examples of common events include:

3064 Information Events

- 3065 Multiple failed logon attempts
- 3066 Locked-out accounts
- 3067 Unauthorized creation of new accounts
- Unexpected remote logons (e.g., logons of individuals that are on vacation, remote logon
 when the individual is expected to be local, remote logon for maintenance support when no
 support was requested)
- 3071 Cleared event logs
- 3072 Unexpectedly full event logs
- 3073 Antivirus or IDS alerts
- 3074 Disabled antivirus or other disabled security controls
- 3075 Requests for information about the system or architecture (social engineering or phishing attempts)

3077 Operational Events

- 3078 Unauthorized configuration changes
- 3079 Unauthorized patching of systems
- 3080 Unplanned shutdowns
- 3081 Physical Access Events
- 3082 Physical intrusions

3083 Networking Events

3084 Unexpected communication, including new ports or protocols being used without appropriate
 3085 change management

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 3086 ■ Unusually heavy network traffic
- 3087 ■ Unauthorized devices connecting to the network
- 3088 Unauthorized communication to external IPs

3089 Organizations should consider that not all events and anomalies are malicious or require follow-3090 up investigation. Organizations should define incident alerting thresholds and response 3091 requirements for the events and anomalies affecting their systems and environment to establish

- 3092 an efficient incident detection capability.
- 3093 Organizations should consider collecting and correlating event data from multiple sources and 3094 sensors using automated mechanisms where possible to improve detecting and alerting
- 3095 capabilities. For example, a centralized intrusion detection system could accept data feeds and
- 3096 logs from multiple devices and network segments to identify and alarm on organization- or environment-specific events. Detection tools should also be integrated with asset management
- 3097
- 3098 tools. This integration can provide additional context to an event (e.g., where the system is
- 3099 located, which firmware version it runs, what the criticality of the system is) to help an 3100
- organization determine the event impact.
- 3101 Supplemental guidance can be found in the following documents:
- 3102 ■ NIST SP 800-92, Guide to Computer Security Log Management
- 3103 ■ NIST SP 800-94, Guide to Intrusion Detection and Prevention Systems
- 3104 ■ NIST SP 1800-7, Situational Awareness for Electric Utilities

OT-Specific Recommendations and Guidance

Organizations should consider OT-specific events and anomalies for their processes and environments. Also, organizations should note that some tools and alerts for behaviors or events that could indicate an intrusion may be normal behaviors and events within the OT environment. To reduce false positive and nuisance alarms, organizations should establish their OT alerting thresholds based on baselines of normal network traffic and data flows in addition to normal human and OT process behavior. Additionally, OT components are often physically remote and not continually staffed. Alerting thresholds may also need to take into consideration the response time associated with the alert. For example, a temperature alert threshold may have to be set to alert earlier based on the expected response time to correct the situation in order to avoid an incident.

Shared credentials are often used on OT systems. Anomalous behavior on shared accounts may be more difficult to determine, so organizations should consider if additional controls, such as identifying the use of shared credentials using physical access monitoring, are required.
3106 6.3.2 Security Continuous Monitoring (DE.CM)

3107 Organizations should implement continuous monitoring as part of the organizational risk

3108 management strategy to monitor the effectiveness of protective measures. This includes 3109 establishing the frequency for evaluating the implementation of the desired outcomes.

studies establishing the frequency for evaluating the implementation of the desired outcomes.

3110 Continuous monitoring can be performed by internal or external resources to identify security

3111 gaps within the environment. Peer reviews (i.e., cold eyes reviews) between sites of the same

3112 organization are highly encouraged. When leveraging third-party services for security continuous

3113 monitoring, it is important to understand and evaluate how the organization's continuous 3114 monitoring data is protected by the third party. A third party that aggregates continuous

3115 monitoring information from multiple organizations may be a desirable target for adversaries.

- 3116 Supplemental guidance can be found in the following documents:
- NIST SP 800-53A Rev. 5, <u>Assessing Security and Privacy Controls in Information Systems</u>
 <u>and Organizations</u>
- 3119 NIST SP 800-55 Rev. 1, <u>Performance Measurement Guide for Information Security</u>
- 3120 NIST SP 800-115, <u>Technical Guide to Information Security Testing and Assessment</u>
- 3121 INIST SP 800-137, <u>Information Security Continuous Monitoring (ISCM) for Federal</u>
 3122 <u>Information Systems and Organizations</u>
- NIST SP 800-137A, Assessing Information Security Continuous Monitoring (ISCM)
 Programs: Developing an ISCM Program Assessment

OT-Specific Recommendations and Guidance

Organizations may find that automation within OT environments may not be possible due to the sensitivity of the systems or the resources required to support the automation. For example, some automated systems may utilize active scanning for supporting vulnerability or patch management or for validating device configurations. Solutions that perform active scanning or use local resources to support automation should be subjected to testing before deployment to the OT system.

Continuous monitoring can be achieved using automated tools, through passive scanning, or with manual monitoring performed at a frequency deemed commensurate with the risk. As an example, a risk assessment may determine that the logs from isolated (i.e., non-networked), non-critical devices should be reviewed monthly by OT personnel to determine if anomalous behavior is occurring. Alternatively, a passive network monitor might be able to detect vulnerable network services without having to scan the devices.

When organizations implement a sampling methodology, the criticality of the components should be considered. For example, the sampling methodology should not inadvertently exclude higher risk devices such as layer 3/layer 4 firewalls.

When using third parties for continuous monitoring of security controls, ensure that the personnel involved have the appropriate skillset to analyze OT environments.

3125

3126 6.3.2.1 Network Monitoring (DE.CM-1)

3127 Network monitoring involves organizations reviewing alerts and logs and analyzing them for

3128 signs of possible cybersecurity incidents. Organizations should consider automation, including

in-house developed, commercially available solutions, or some combination of tools, to assist
with monitoring efforts. Tools and capabilities that support Behavior Anomaly Detection (BAD),

3131 Security Information and Event Management (SIEM), or Intrusion Detection/Prevention systems

3132 (IDS/IPS) can assist organizations with monitoring traffic throughout the network and generate

3133 alarms when they identify anomalous or suspicious traffic. Some other capabilities to consider

3134 for network monitoring include:

- 3135 Asset management, including discovering and inventorying devices connected to the network
- Baselining typical network traffic, data flows, and device-to-device communications ■
- 3137 Diagnosing network performance issues
- 3138 Identifying misconfigurations or malfunctions of networked devices
- 3139 Supplemental guidance can be found in the following documents:
- 3140 NIST SP 800-94, *Guide to Intrusion Detection and Prevention Systems (IDPS)*
- 3141 INISTIR 8219, <u>Securing Manufacturing Industrial Control Systems: Behavioral Anomaly</u>
 3142 <u>Detection</u>

OT-Specific Recommendations and Guidance

Network monitoring can greatly enhance the ability to detect attacks entering or leaving the OT networks, thereby improving security. It can also improve network efficiency by detecting non-essential traffic. OT cybersecurity personnel must be part of the diagnostic process of interpreting the alerts provided by network monitoring tools. Careful monitoring and an understanding of the normal state of the OT network can help distinguish transient conditions from legitimate attacks and provide insight into events that are outside the normal state.

Gaining access to network traffic is typically performed with switched port analyzer (SPAN) ports and network taps. SPAN ports are a feature in network devices that can logically duplicate and forward select network traffic to a network monitoring solution. Taps are bump-in-the-wire network devices that duplicate traffic from a single physical link. For both types of sensors, care should be taken as performance impacts to the OT system may result from their use.

Network sensors should be placed to effectively monitor the OT network. Typical installations locate the network sensors between the control network and corporate network, but other locations can include network perimeters, key network segments (e.g., DMZ), and critical OT devices.

Regardless of the type of network sensor, all sensors should be subjected to extensive testing and be implemented in a test environment before being deployed to the OT network. Configuring the sensor into a test or learning mode after it is installed on the network provides an opportunity to tune the device with real OT network traffic. Tuning can help reduce false positive alerts, reduce the alert "noise" from typical network traffic, and help identify implementation and configuration problems.

Failure modes of network sensors in the event of a sensor failure should be considered (e.g., does the sensor fail-safe or fail-open if the device fails).

3143

3144 6.3.2.2 System Use Monitoring (DE.CM-1 and DE-CM-3)

3145 System use monitoring solutions enable an organization to monitor, store, and audit system

events (e.g., system logs, running processes, file access and modification, system and application

3147 configuration changes) occurring within a system. Monitoring users and systems helps to ensure

they are behaving as expected and can aid in troubleshooting when events occur by providing

3149 information about which users were working within the system during the event. System and

3150 device misconfigurations can also be identified.

3151 Compared to network monitoring, system use monitoring solutions can analyze activity that does

3152 not traverse the network. In host-based solutions, this can be achieved with real-time monitoring

3153 of inter-process communications and other internal OS data, while active-scanning solutions

3154 gather information by querying the OS or application programming interfaces (APIs).

- 3155 Supplemental guidance can be found in the following documents:
- 3156 INIST SP 800-94, *Guide to Intrusion Detection and Prevention Systems (IDPS)*
- 3157 INIST SP 800-137, <u>Information Security Continuous Monitoring (ISCM) for Federal</u>
 3158 <u>Information Systems and Organizations</u>

OT-Specific Recommendations and Guidance

Situational awareness of the OT system is imperative to understanding the current state of the system, validating that it is operating as intended and that no policy violations or cyber incidents have hindered its operation. Strong device monitoring, logging, and auditing is necessary to collect, correlate, and analyze security-related information, resulting in actionable communication of security status across the complete OT system. In the event of a cybersecurity incident, the information gathered by system-use monitoring solutions can be used to perform forensic analysis of the OT system.

System-use monitoring solutions can generate significant amounts of events. It is generally suggested these solutions be used in combination with a control log management system, such as a SIEM, to help filter the types of events and reduce alert fatigue. The amount of tuning and customization of events and alerts is dependent on the type of OT system and the number of devices in the system.

System-use monitoring solutions should be subjected to extensive testing and be implemented in a test environment before being deployed to devices in the OT system. Concerns include performance impacts of host-based agents on devices, impact of active scanning on devices, and capability of the network infrastructure bandwidth. Separate appliances can offload the processing. Host-based agents can impact the performance of the OT device because of the resources they consume from the host.

3159

3160 6.3.2.3 Malicious Code Detection (DE.CM-4)

3161 When stored, processed, and transmitted, files and data streams should be scanned using

3162 specialized tools with a combination of heuristic algorithms and known malware signatures to

3163 detect and block potentially malicious code. Malicious code protection tools only function

3164 effectively when installed, configured, run full-time, and maintained properly against the state of

- 3165 known attack methods and payloads.
- 3166 Supplemental guidance for anti-malware practices can be found in the following documents:
- 3167 NIST SP 800-83 Rev. 1, *Guide to Malware Incident Prevention and Handling for Desktops* 3168 *and Laptops*
- 3169 NIST SP 1058, <u>Using Host-Based Anti-Virus Software on Industrial Control Systems:</u>
 3170 <u>Integration Guidance and a Test Methodology for Assessing Performance Impacts</u>

OT-Specific Recommendations and Guidance

While antivirus tools are common security practice in IT computer systems, the use of antivirus with OT may require adopting special practices including compatibility checks, change management, and performance impact metrics. These practices should be utilized for testing new signatures and new versions of antivirus software.

Some OT vendors recommend and even support the use of vendor-specific antivirus tools. In some cases, OT system vendors may have performed regression testing across their product line for supported versions of a particular antivirus tool and provide associated installation and configuration documentation.

Generally:

- General-purpose Windows, Unix, Linux systems, etc., used as engineering workstations, data historians, maintenance laptops, and backup servers can be secured like commercial IT equipment: install push- or auto-updated antivirus software with updates distributed via an antivirus server located inside the process control network. Follow organization-developed procedures for transferring the latest updates from known-good vendor sites to the OT antivirus servers to other OT computers and servers.
- Follow vendor recommendations on all other servers and computers (e.g., DCS, PLC, instruments) that have time-dependent code, modified or extended OSs, or any other change that makes it different from a standard PC. Perform testing of the antivirus software and updates on an offline system if possible (e.g., install on a backup HMI and validate that performance is not degraded before applying to the primary HMI).

According to NIST SP 1058 [SP1058], antivirus software may negatively impact the timecritical control processes of an ICS. The SP also identified significant CPU usage when running manual scans and signature updates, which could have negative impacts on OT computers and servers. As a result:

- Configuration of the antivirus software should be tested on an offline system, if possible.
- Manual scanning and signature updates should be performed while the system is not critical for operations.
- Redundancy should be considered for critical systems requiring ongoing antivirus updates, such that signature updates can be performed without impact to operations (e.g., consoles and HMIs).
- When configuring file exclusion lists, determine which control application files should not be scanned during production time because of possible OT system malfunction or performance degradation.

CISA provides a recommended practice for updating antivirus in OT environments.

3171

3172 6.3.2.4 Vulnerability Scanning (DE.CM-8)

3173 Vulnerabilities can be identified through a combination of automated and manual techniques.

- 3174 These vulnerability scans should be performed on an ongoing basis to capture new
- 3175 vulnerabilities as they are discovered.

OT-Specific Recommendations and Guidance

Some common ways to achieve vulnerability identification in the OT environment are:

- Continuous monitoring using passive or active scanning capabilities. Organizations should consider how vulnerability scanning tools may impact OT components and communications by testing in an offline environment prior to implementing in production.
 - Passive scanning tools typically utilize network traffic analyzers to detect assets and determine possible vulnerabilities affecting the assets.
 - Active scanning tools typically utilize an agent to connect to networked assets and perform detailed queries and analysis of the components to determine possible vulnerabilities affecting the assets.
- Performance testing, load testing, and penetration testing if the test will not adversely impact the production environment.
- Regular audits, assessments, and peer reviews to identify gaps in security.
- 3176

3177 6.3.3 Detection Process (DE.DP)

3178 Detection process includes maintaining and testing processes, procedures, and tools to ensure 3179 anomalous events are identified in a prompt manner and responsible parties (individuals) are 3180 alerted and help accountable for adequate response. To ensure ongoing awareness of anomalous 3181 events: define roles and responsibilities to ensure accountability; periodically review that 3182 detection activities comply with the requirements; test the detection processes regularly; 3183 communicate detected events to appropriate personnel to act; and continuously improve 3184 detection capabilities.

3185 6.4 Respond (RS)

The Response function supports the ability to take the appropriate course of action and activities to contain a cybersecurity incident when it occurs.

3188 6.4.1 Response Planning (RS.RP)

3189 When responding to events, organizations should attempt to capture details associated with

3190 executing the documented response plans. This may help organizations during the post-incident

3191 review process to identify gaps or potential opportunities for improvement in the response plan.

3192 Due to time sensitivity of response efforts, if capturing execution details impacts safety or

3193 increases the time to complete the response plan, organizations may want to consider other

- techniques such as reviewing logs, reviewing video footage captured during the response
- 3195 activities, or interviewing response personnel.

3196 6.4.2 Response Communications (RS.CO)

3197 Response to a cybersecurity incident includes coordination with internal and external

3198 stakeholders. An incident response team should be assembled. Depending on the complexity and

3199 impact of the incident, the incident response team could consist of one or many individuals that

3200 have been trained on incident response. The FEMA <u>National Incident Management System</u>

- 3201 (NIMS) can be used to standardize on common terminology and roles for incident response.
- Prior to an incident, organizations should consider how to communicate with response personneland external entities, including:
- 3204 developing an email distribution list for incident response
- 3205 leveraging an emergency notification system
- establishing backup communication plans for radio / phone / email if primary communication
 systems fail
- 3208 designating a spokesperson for external communications
- 3209 designating a scribe for internal incident communications

OT-Specific Recommendations and Guidance

Organizations should consider <u>FEMA's guidance on crisis communications</u> when establishing their communication plans and strategies.

Personnel responsible for responding to an incident should be informed of and trained on their responsibilities.

The response plan should include a detailed list of organizations and personnel that should be contacted for incident response and reporting under various circumstances. Each individual should be assigned a role or roles required for incident response, which could include incident commander; operations, planning, logistics, or finance/administration section chief or member; and public information, safety, or liaison officer.

To support a response in an OT environment, an organization should consider including the following personnel in the response plan:

Internal Resources

- Designated Incident Commander
- Operations leadership
- Safety personnel
- On-call OT systems personnel

■ On-call IT personnel
Physical security personnel
■ Administrative personnel
■ Procurement
 Public relations and legal personnel
External Industry Partners
 OT technical support (vendors, integrators)
 Operational supply chain (e.g., suppliers, customers, distributors, business partners)
■ Incident response team
■ Surge support
■ Impacted community (e.g., facility neighbors)
Organizations are required to <u>report incidents to federal agencies</u> in accordance with PPD-21 [PPD-21] and PPD-41 [PPD-41]. CISA maintains the <u>list of sector-specific contacts</u> .
Legal departments can often assist with developing nondisclosure agreements or other contracts if an organization plans to utilize external resources for incident response. It may be beneficial to develop these contracts prior to an incident occurring so that incident response can be immediate. Private companies are available to be held on retainer in case of an OT incident.

3210

3211 6.4.3 Response Analysis (RS.AN)

Analyses of cybersecurity incidents are conducted to ensure effective response and recovery
 activities, consistent with the detection process and the response plan. Analysis includes
 reviewing notifications and determining if further investigation is required, understanding the
 potential impact, performing forensics, categorizing the incident consistent with the response

- 3216 plan, and analyzing disclosed vulnerabilities.
- 3217 Supplemental guidance for the response analysis controls can be found in the following3218 document:
- 3219 NIST SP 800-86, *Guide to Integrating Forensic Techniques into Incident Response*

OT-Specific Recommendations and Guidance

When determining the overall impact of a cybersecurity incident, consider the dependencies of OT and its resulting impact on operations. For example, an OT system may be dependent

on IT for business applications, such that an incident on the IT network results in an OT disconnect or shutdown.

If an organization does not have adequate resources or capabilities to conduct OT forensics, consider engaging external organizations to perform forensic analysis.

Organizations should identify and classify cyber and non-cyber incidents affecting the OT environment according to the incident response plan. When developing the OT incident response plan, potential classes of incidents could include accidental actions taken by authorized personnel, targeted malicious attacks, and untargeted malicious attacks.

3220

3221 6.4.4 Response Mitigation (RS.MI)

Activities are performed to prevent expansion of the incident, mitigate its effects, and resolve the incident. Mitigation activity should be consistent with the response plan.

OT-Specific Recommendations and Guidance

OT components are often physically remote and not continually staffed. For these cases, consider how the organization would respond during an incident and the additional time required to coordinate the response. The system may need to be designed with the capability to minimize impacts until personnel can arrive onsite (e.g., remote shutdown or disconnects).

Cyber incident mitigation may involve process shutdowns or communication disconnects that have impact to operations. These impacts should be understood and communicated during incident mitigation.

3224

3225 6.4.5 Response Improvements (RS.IM)

3226 Organizational response activities are improved by incorporating lessons learned from current 3227 and previous detection and response activities. It is recommended to designate an individual(s) 3228 responsible for documenting and communicating response actions to the incident response team 3229 which can later be reviewed for lessons learned.

3230 6.5 Recover (RC)

3231 Timely recovery to normal operations after a cybersecurity incident is critical. The recover

- 3232 function addresses developing and implementing activities to maintain resilience of systems and
- 3233 ensure timely restoration of capabilities and services affected by a cybersecurity incident.

3234 6.5.1 Recovery Planning (RC.RP)

When recovering from events, organizations should attempt to capture details associated with the execution of the documented recovery plans. Capturing execution details may help organizations

- 3237 during the post-incident review process to determine if any gaps or potential opportunities for
- improvement in the recovery plan should be considered. Due to time sensitivity of recovery
- efforts, if capturing execution details impacts safety or increases the time to complete the
- 3240 recovery plan, organizations may want to consider other techniques such as reviewing logs,
- 3241 reviewing video footage captured during the recovery activities, or interviewing recovery
- 3242 personnel.
- 3243 Supplemental guidance for recovery planning can be found in the following documents:
- 3244 NIST SP 800-184, *Guide for Cybersecurity Event Recovery*
- 3245 NIST SP 800-209, <u>Security Guidelines for Storage Infrastructure</u>

3246 6.5.2 Recovery Improvements (RC.IM)

- As a recovery effort is ongoing, the recovery steps taken should be documented to develop lessons learned. These lessons can be used to improve recovery plans and processes.
- 3249 Supplemental guidance for recovery improvements can be found in the following document:
- 3250 NIST SP 800-184, *Guide for Cybersecurity Event Recovery*

3251 6.5.3 Recovery Communications (RC.CO)

- Restoration activities are coordinated with internal and external parties. In addition to operational recovery, an organization may need to manage public relations and repair its reputation.
- 3254 Supplemental guidance for recovery communications can be found in the following document:
- 3255 NIST SP 800-184, *Guide for Cybersecurity Event Recovery*

OT-Specific Recommendations and Guidance

A list of internal and external resources for recovery activities should be developed as part of the Recovery Planning effort. During an event, this list should be used to get all necessary personnel on-site, as required, to recover within the RTO and RPO.

Internal Communications

- OT personnel
- IT personnel
- Procurement
- Management with appropriate authority to approve the cost of recovery
- Storage/warehouse personnel

External Communications

- OT vendors
- Security companies that may be held on retainer for response and recovery efforts
- Storage/warehouse personnel
- Internet service providers
- Owners of the attacking systems and potential victims

3256

3257

3258	References	
3259 3260 3261	[AGA12]	American Gas Association (2006) Cryptographic Protection of SCADA Communications, Part 1: Background, Policies and Test Plan. AGA Report No. 12.
3262 3263 3264	[ANSI-ISA-5-1]	International Society of Automation (2009) Instrumentation Symbols and Identification, ANSI/ISA-5.1-2009. Available at <u>https://webstore.ansi.org/Standards/ISA/ANSIISA2009</u>
3265 3266 3267 3268	[ANSI-ISA-51-1]	International Society of Automation (1993) Process Instrumentation Terminology, ANSI/ISA-51.1-1979 (R1993). Available at https://www.isa.org/products/isa-51-1-1979-r1993-process-instrumentation- termin
3269 3270 3271 3272 3273	[ANSI-ISA-84]	Instrumentation, Systems, and Automation Society (2004) Functional Safety: Safety Instrumented Systems for the Process Industry Sector – Part 1: Framework, Definitions, System, Hardware, and Software Requirements. ANSI/ISA-84.00.01-2004 Part 1. Available at https://webstore.ansi.org/standards/isa/ansiisa8400012004part
3274 3275	[ATTACK-ICS]	The MITRE Corporation (2022) <i>ATT&CK[®] for Industrial Control Systems</i> . Available at <u>https://collaborate.mitre.org/attackics</u>
3276 3277	[Bailey]	Bailey D, Wright E (2003) Practical SCADA for Industry. (IDC Technologies, Vancouver, Canada).
3278 3279 3280	[Berge]	Berge J (2002) Fieldbuses for Process Control: Engineering, Operation, and Maintenance. (International Society of Automation, Research Triangle Park, North Carolina).
3281 3282 3283	[Boyer]	Boyer S (2010) SCADA: Supervisory Control and Data Acquisition. 4th ed. (International Society of Automation, Research Triangle Park, North Carolina).
3284 3285 3286 3287 3288 3288 3289	[CISA-CIVR]	Cybersecurity and Infrastructure Security Agency (2021) Cybersecurity Incident & Vulnerability Response Playbooks: Operational Procedures for Planning and Conducting Cybersecurity Incident and Vulnerability Response Activities in FCEB Information Systems. Available at <u>https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cy</u> <u>bersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf</u>
3290 3291 3292 3293	[CNSS1253]	Committee on National Security Systems (2014) Security Categorization and Control Selection for National Security Systems. CNSS Instruction (CNSSI) No. 1253. Available at https://www.cnss.gov/CNSS/issuances/Instructions.cfm

3294 3295 3296	[CNSS4009]	Committee on National Security Systems (2022) Committee on National Security Systems (CNSS) Glossary. CNSS Instruction (CNSSI) No. 4009. Available at <u>https://www.cnss.gov/CNSS/issuances/Instructions.cfm</u>
3297 3298 3299 3300	[CSF]	National Institute of Standards and Technology (2018) Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1. (National Institute of Standards and Technology, Gaithersburg, MD). <u>https://doi.org/10.6028/NIST.CSWP.04162018</u>
3301 3302 3303	[EO13636]	Executive Order 13636 (2013) Improving Critical Infrastructure Cybersecurity. (The White House, Washington, DC), DCPD-201300091, February 12, 2013. <u>https://www.govinfo.gov/app/details/DCPD-201300091</u>
3304 3305	[Erickson]	Erickson K, Hedrick J (1999) Plantwide Process Control. (John Wiley & Sons, Inc., New York, NY).
3306 3307 3308 3309 3310	[FIPS140-2]	National Institute of Standards and Technology (2001) Security Requirements for Cryptographic Modules. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 140-2, Change Notice 2 December 03, 2002. <u>https://doi.org/10.6028/NIST.FIPS.140-2</u>
3311 3312 3313 3314	[FIPS140-3]	National Institute of Standards and Technology (2019) Security Requirements for Cryptographic Modules. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 140-3. <u>https://doi.org/10.6028/NIST.FIPS.140-3</u>
3315 3316 3317 3318	[FIPS180]	National Institute of Standards and Technology (2015) Secure Hash Standard (SHS). (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 180-4. https://doi.org/10.6028/NIST.FIPS.180-4
3319 3320 3321 3322	[FIPS186]	National Institute of Standards and Technology (2013) Digital Signature Standard (DSS). (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 186-4. <u>https://doi.org/10.6028/NIST.FIPS.186-4</u>
3323 3324 3325 3326	[FIPS197]	National Institute of Standards and Technology (2001) Advanced Encryption Standard (AES). (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 197. <u>https://doi.org/10.6028/NIST.FIPS.197</u>
3327 3328 3329 3330	[FIPS199]	National Institute of Standards and Technology (2004) Standards for Security Categorization of Federal Information and Information Systems. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 199. <u>https://doi.org/10.6028/NIST.FIPS.199</u>

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

3331 3332 3333 3334	[FIPS200]	National Institute of Standards and Technology (2006) Minimum Security Requirements for Federal Information and Information Systems. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 200. <u>https://doi.org/10.6028/NIST.FIPS.200</u>
3335 3336 3337 3338	[FIPS201]	National Institute of Standards and Technology (2013) Personal Identity Verification (PIV) of Federal Employees and Contractors. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 201-2. <u>https://doi.org/10.6028/NIST.FIPS.201-2</u>
3339 3340 3341 3342	[FIPS202]	National Institute of Standards and Technology (2015) SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 202. <u>https://doi.org/10.6028/NIST.FIPS.202</u>
3343 3344	[FISMA]	Federal Information Security Modernization Act of 2014, Pub. L. 113-283, 128 Stat. 3073. <u>https://www.govinfo.gov/app/details/PLAW-113publ283</u>
3345 3346 3347 3348	[IEC61511]	International Electrotechnical Commission (2016) Functional safety – Safety instrumented systems for the process industry sector – Part 1: Framework, definitions, system, hardware and application programming requirements, IEC 61511-1:2016. Available at <u>https://webstore.iec.ch/publication/24241</u>
3349 3350 3351	[IEC62264]	International Electrotechnical Commission (2013) Enterprise-control system integration - Part 1: Models and terminology, IEC 62264-1:2013. Available at <u>https://webstore.iec.ch/publication/6675</u>
3352 3353 3354	[IIRA19]	Industrial Internet Consortium (2019) The Industrial Internet of Things Volume G1: Reference Architecture, Version 1.9. Available at https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
3355 3356 3357 3358	[IR6859]	Falco J, Stouffer K, Wavering A, Proctor F (2002) IT Security for Industrial Control Systems. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency Report (IR) 6859. Available at https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir6859.pdf
3359 3360 3361 3362 3363	[IR8062]	Brooks SW, Garcia ME, Lefkovitz NB, Lightman S, Nadeau EM (2017) An Introduction to Privacy Engineering and Risk Management in Federal Systems. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) 8062. <u>https://doi.org/10.6028/NIST.IR.8062</u>
3364 3365 3366 3367 3368 3369	[IR8183A]	Stouffer KA, Zimmerman T, Tang C, Pease M, Cichonski JA, Shah N, Downard W (2019) Cybersecurity Framework Manufacturing Profile Low Impact Level Example Implementations Guide: Volume 1 – General Implementation Guidance. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) 8183A, Vol. 1. <u>https://doi.org/10.6028/NIST.IR.8183A-1</u>

3370 3371 3372 3373 3374 3375		Stouffer KA, Zimmerman T, Tang C, Pease M, Cichonski JA, Shah N, Downard W (2019) Cybersecurity Framework Manufacturing Profile Low Impact Level Example Implementations Guide: Volume 2 – Process-based Manufacturing System Use Case. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) 8183A, Vol. 2. <u>https://doi.org/10.6028/NIST.IR.8183A-2</u>
3376 3377 3378 3379 3380 3381		Stouffer KA, Zimmerman T, Tang C, Pease M, Cichonski JA, Shah N, Downard W (2019) Cybersecurity Framework Manufacturing Profile Low Impact Level Example Implementations Guide: Volume 3 – Discrete-based Manufacturing System Use Case. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) 8183A, Vol. 3. <u>https://doi.org/10.6028/NIST.IR.8183A-3</u>
3382 3383 3384 3385	[ISA62443]	International Society of Automation (2020) Security for industrial automation and control systems (all parts), ISA-62443. Available at <u>https://www.isa.org/standards-and-publications/isa-standards/isa-standards- committees/isa99</u>
3386 3387	[ISADICT]	International Society of Automation [2002] The Automation, Systems, and Instrumentation Dictionary, 4 th Edition. International Society of Automation.
3388	[ISO7498-1]	ISO/IEC 7498-1:1994, https://www.iso.org/standard/20269.html
3389 3390 3391	[Knapp]	Knapp E (2011) Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems, (Syngress, Waltham, Massachusetts).
3392 3393 3394 3395 3396	[OMB-A130]	Office of Management and Budget (2016) Managing Information as a Strategic Resource. (The White House, Washington, DC), OMB Circular A- 130, July 28, 2016. Available at <u>https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A130/a</u> <u>130revised.pdf</u>
3397 3398 3399 3400	[OMB-M1917]	Office of Management and Budget (2019) Enabling Mission Delivery through Improved Identity, Credential, and Access Management. (The White House, Washington, DC), OMB Memorandum M-19-17, May 21, 2019. Available at https://www.whitehouse.gov/wp-content/uploads/2019/05/M-19-17.pdf
3401 3402 3403 3404	[Peerenboom]	Peerenboom J (2001) "Infrastructure Interdependencies: Overview of Concepts and Terminology." (NSF/OSTP Workshop on Critical Infrastructure: Needs in Interdisciplinary Research and Graduate Training, Washington, DC).
3405 3406 3407 3408	[PF]	National Institute of Standards and Technology (2020) NIST Privacy Framework: A Tool for Improving Privacy Through Enterprise Risk Management, Version 1.0. (National Institute of Standards and Technology, Gaithersburg, MD). <u>https://doi.org/10.6028/NIST.CSWP.01162020</u>

3409 3410 3411 3412 3413	[PPD-21]	Presidential Policy Directive 21 (2013) Critical Infrastructure Security and Resilience. (The White House, Washington, DC), February 12, 2013. Available at <u>https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil</u>
3414 3415 3416 3417	[PPD-41]	Presidential Policy Directive 41 (2016) United States Cyber Incident Coordination. (The White House, Washington, DC), July 26, 2016. Available at <u>https://obamawhitehouse.archives.gov/the-press-</u> office/2016/07/26/presidential-policy-directive-united-states-cyber-incident
3418 3419 3420	[RFC4949]	Shirey R (2007) Internet Security Glossary, Version 2. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 4949. <u>https://doi.org/10.17487/RFC4949</u>
3421 3422 3423 3424	[Rinaldi]	Rinaldi SM, Peerenboom JP, Kelly TK (2001) "Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies," IEEE Control Systems Magazine, Vol. 21, No. 6, pp. 11-25, December 2001). https://doi.org/10.1109/37.969131
3425 3426 3427 3428 3429	[SP1058]	Falco JA, Hurd S, Teumim D (2006) Using Host-Based Anti-Virus Software on Industrial Control Systems: Integration Guidance and a Test Methodology for Assessing Performance Impacts. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 1058. <u>https://doi.org/10.6028/nist.sp.1058</u>
3430 3431 3432 3433	[SP800-100]	Bowen P, Hash J, Wilson M (2006) Information Security Handbook: A Guide for Managers. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-100, Includes updates as of March 7, 2007. <u>https://doi.org/10.6028/NIST.SP.800-100</u>
3434 3435 3436 3437	[SP800-150]	Johnson CS, Waltermire DA, Badger ML, Skorupka C, Snyder J (2016) Guide to Cyber Threat Information Sharing. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-150. <u>https://doi.org/10.6028/NIST.SP.800-150</u>
3438 3439 3440 3441	[SP800-161]	Boyens JM, Paulsen C, Moorthy R, Bartol N (2015) Supply Chain Risk Management Practices for Federal Information Systems and Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-161. <u>https://doi.org/10.6028/NIST.SP.800-161</u>
3442 3443 3444 3445	[SP800-167]	Sedgewick A, Souppaya MP, Scarfone KA (2015) Guide to Application Whitelisting. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-167. <u>https://doi.org/10.6028/NIST.SP.800-167</u>
3446 3447	[SP800-18r1]	Swanson MA, Hash J, Bowen P (2006) Guide for Developing Security Plans for Federal Information Systems. (National Institute of Standards and

NIST SP 800-82r3 ipd **GUIDE TO OT SECURITY** INITIAL PUBLIC DRAFT 3448 Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-18, Rev. 3449 1. https://doi.org/10.6028/NIST.SP.800-18r1 3450 [SP800-207] Rose SW, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. 3451 (National Institute of Standards and Technology, Gaithersburg, MD), NIST 3452 Special Publication (SP) 800-207. https://doi.org/10.6028/NIST.SP.800-207 3453 [SP800-28v2] Jansen W, Winograd T, Scarfone KA (2008) Guidelines on Active Content 3454 and Mobile Code. (National Institute of Standards and Technology, 3455 Gaithersburg, MD), NIST Special Publication (SP) 800-28, Version 2. 3456 https://doi.org/10.6028/NIST.SP.800-28ver2 Joint Task Force Transformation Initiative (2012) Guide for Conducting Risk 3457 [SP800-30r1] Assessments. (National Institute of Standards and Technology, Gaithersburg, 3458 3459 MD), NIST Special Publication (SP) 800-30, Rev. 1. 3460 https://doi.org/10.6028/NIST.SP.800-30r1 Swanson MA, Bowen P, Phillips AW, Gallup D, Lynes D (2010) Contingency 3461 [SP800-34r1] 3462 Planning Guide for Federal Information Systems. (National Institute of 3463 Standards and Technology, Gaithersburg, MD), NIST Special Publication 3464 (SP) 800-34, Rev. 1, Includes updates as of November 11, 2010. https://doi.org/10.6028/NIST.SP.800-34r1 3465 3466 [SP800-37r2] Joint Task Force (2018) Risk Management Framework for Information 3467 Systems and Organizations: A System Life Cycle Approach for Security and Privacy. (National Institute of Standards and Technology, Gaithersburg, MD), 3468 NIST Special Publication (SP) 800-37, Rev. 2. 3469 3470 https://doi.org/10.6028/NIST.SP.800-37r2 3471 [SP800-39] Joint Task Force Transformation Initiative (2011) Managing Information 3472 Security Risk: Organization, Mission, and Information System View. 3473 (National Institute of Standards and Technology, Gaithersburg, MD), NIST 3474 Special Publication (SP) 800-39. https://doi.org/10.6028/NIST.SP.800-39 3475 [SP800-40r4] Souppaya MP, Scarfone KA (2022) Guide to Enterprise Patch Management Planning: Preventive Maintenance for Technology. (National Institute of 3476 3477 Standards and Technology, Gaithersburg, MD), NIST Special Publication 3478 (SP) 800-40, Rev. 4. https://doi.org/10.6028/NIST.SP.800-40r4 3479 [SP800-41r1] Scarfone KA, Hoffman P (2009) Guidelines on Firewalls and Firewall Policy. 3480 (National Institute of Standards and Technology, Gaithersburg, MD), NIST 3481 Special Publication (SP) 800-41, Rev. 1. https://doi.org/10.6028/NIST.SP.800-41r1 3482 3483 [SP800-47] Grance T, Hash J, Peck S, Smith J, Korow-Diks K (2002) Security Guide for 3484 Interconnecting Information Technology Systems. (National Institute of 3485 Standards and Technology, Gaithersburg, MD), NIST Special Publication 3486 (SP) 800-47. https://doi.org/10.6028/NIST.SP.800-47

3487 3488 3489 3490 3491	[SP800-53Ar4]	Joint Task Force Transformation Initiative (2014) Assessing Security and Privacy Controls in Federal Information Systems and Organizations: Building Effective Assessment Plans. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53A, Rev. 4, Includes updates as of December 18, 2014. <u>https://doi.org/10.6028/NIST.SP.800-53Ar4</u>
3492 3493 3494 3495	[SP800-53B]	Joint Task Force (2020) Control Baselines for Information Systems and Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53B, Includes updates as of December 10, 2020. <u>https://doi.org/10.6028/NIST.SP.800-53B</u>
3496 3497 3498 3499	[SP800-53r5]	Joint Task Force (2020) Security and Privacy Controls for Information Systems and Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53, Rev. 5. Includes updates as of December 10, 2020. <u>https://doi.org/10.6028/NIST.SP.800-53r5</u>
3500 3501 3502 3503 3504	[SP800-60v1r1]	Stine KM, Kissel RL, Barker WC, Fahlsing J, Gulick J (2008) Guide for Mapping Types of Information and Information Systems to Security Categories. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-60, Vol. 1, Rev. 1. https://doi.org/10.6028/NIST.SP.800-60v1r1
3505 3506 3507 3508 3509	[SP800-60v2r1]	Stine KM, Kissel RL, Barker WC, Lee A, Fahlsing J (2008) Guide for Mapping Types of Information and Information Systems to Security Categories: Appendices. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-60, Vol. 2, Rev. 1. https://doi.org/10.6028/NIST.SP.800-60v2r1
3510 3511 3512 3513	[SP800-61]	Grance T, Kent K, Kim B (2004) Computer Security Incident Handling Guide. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-61. <u>https://doi.org/10.6028/NIST.SP.800-61</u>
3514 3515 3516 3517	[SP800-61r2]	Cichonski PR, Millar T, Grance T, Scarfone KA (2012) Computer Security Incident Handling Guide. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-61, Rev. 2. <u>https://doi.org/10.6028/NIST.SP.800-61r2</u>
3518 3519 3520 3521	[SP800-67r2]	Barker EB, Mouha N (2017) Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-67, Rev. 2. <u>https://doi.org/10.6028/NIST.SP.800-67r2</u>
3522 3523 3524 3525 3526	[SP800-73-4]	Cooper DA, Ferraiolo H, Mehta KL, Francomacaro S, Chandramouli R, Mohler J (2015) Interfaces for Personal Identity Verification. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-73-4, Includes updates as of February 8, 2016. <u>https://doi.org/10.6028/NIST.SP.800-73-4</u>

3527 3528 3529 3530	[SP800-76-2]	Grother PJ, Salamon WJ, Chandramouli R (2013) Biometric Specifications for Personal Identity Verification. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-76-2. https://doi.org/10.6028/NIST.SP.800-76-2
3531 3532 3533 3534	[SP800-78-4]	Polk WT, Dodson DF, Burr WE, Ferraiolo H, Cooper DA (2015) Cryptographic Algorithms and Key Sizes for Personal Identity Verification. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-78-4. <u>https://doi.org/10.6028/NIST.SP.800-78-4</u>
3535 3536 3537	[USC44-3552]	"Definitions," Title 44 <i>U.S. Code</i> , Sec. 3552. 2018 ed. Available at <u>https://www.govinfo.gov/app/details/USCODE-2020-title44/USCODE-2020-title44-chap35-subchapII-sec3552</u>
3538 3539 3540 3541	[Williams]	Williams TJ (1989) A Reference Model For Computer Integrated Manufacturing (CIM). (Instrument Society of America, Research Triangle Park, NC). Available at <u>http://www.pera.net/Pera/PurdueReferenceModel/ReferenceModel.html</u>
3542		

3543 Appendix A—Acronyms

3544 Selected acronyms and abbreviations used in this paper are defined below.

A3	Association for Advancing Automation
ABAC	Attribute-Based Access Control
ACC	American Chemistry Council
ACI	Aviation Cyber Initiative
ACL	Access Control List
AES	Advanced Encryption Standard
AFPM	American Fuel and Petrochemical Manufacturers
AGA	American Gas Association
AHA	American Hospital Association
AI	Artificial Intelligence
AMA	American Medical Association
AMWA	Association of Metropolitan Water Agencies
AO	Authorizing Official
APCP	American Hospital Association Preferred Cybersecurity Provider
API	American Petroleum Institute, Application Programming Interface
APPA	American Public Power Association
ASDSO	Association of State Dam Safety Officials
ATO	Air Traffic Organization
AWWA	American Water Works Association
BAD	Behavioral Anomaly Detection
BAS	Building Automation System
BCP	Business Continuity Plan
BES	Bulk Electric System
BPCS	Basic Process Control System
C-SCRM	Cybersecurity Supply Chain Risk Management
CCE	Consequence-Driven Cyber-Informed Engineering
CD	Compact Disc
CDC	Cybersecurity Defense Community
CEDS	Cybersecurity for Energy Delivery Systems
CEO	Chief Executive Officer
CERT	Computer Emergency Response Team

CESER	Cybersecurity, Energy Security, and Emergency Response
CFATS	Chemical Facility Anti-Terrorism Standards
CI	Critical Infrastructure
CIE	Cyber-Informed Engineering
CIGRE	International Council on Large Electric Systems
CIM	Computer Integrated Manufacturing
CIO	Chief Information Officer
CIP	Common Industrial Protocol, Critical Infrastructure Protection
CIPAC	Critical Infrastructure Partnership Advisory Council
CISA	Cybersecurity and Infrastructure Security Agency
CISO	Chief Information Security Officer
CMVP	Cryptographic Module Validation Program
CNSS	Committee on National Security Systems
CNSSI	Committee on National Security Systems Instruction
COO	Chief Operating Officer
COTS	Commercial Off-the-Shelf
CPNI	Centre for the Protection of National Infrastructure
CPS	Cyber Physical System
CPU	Central Processing Unit
CRISP	Cybersecurity Risk Information Sharing Program
CS3STHLM	Stockholm International Summit on Cyber Security in SCADA and ICS
CSET	Cyber Security Evaluation Tool
CSF	Cybersecurity Framework
CSO	Chief Security Officer
CSRC	Computer Security Resource Center
CSRIC	Communications Security, Reliability, and Interoperability Council
CVE	Common Vulnerabilities and Exposures
CyOTE	Cybersecurity for the Operational Technology Environment
CyTRICS	Cyber Testing for Resilient Industrial Control Systems
DCS	Distributed Control System
DES	Data Encryption Standard
DHCP	Dynamic Host Configuration Protocol
DHS	Department of Homeland Security
DICWG	Digital Instrumentation and Control Working Group

DLP	Data Loss Prevention
DMZ	Demilitarized Zone
DNP3	DNP3 Distributed Network Protocol (published as IEEE 1815)
DNS	Domain Name System
DOE	Department of Energy
DoS	Denial of Service
DOT	United States Department of Transportation
DRP	Disaster Recovery Plan
DSS	Digital Signature Standard
DVD	Digital Video Disc
E-ISAC	Electricity Information Sharing and Analysis Center
EM	Electromagnetic
EMBS	IEEE Engineering in Medicine and Biology Society
EMP	Electromagnetic Pulse
EMS	Energy Management System
EPA	United States Environmental Protection Agency
EPRI	Electric Power Research Institute
ERM	Enterprise Risk Management
ESD	Emergency Shut Down
FAA	Federal Aviation Administration
FCC	Federal Communications Commission
FDA	United States Food and Drug Administration
FEMA	Federal Emergency Management Agency
FGS	Fire and Gas System
FHWA	Federal Highway Administration
FIPS	Federal Information Processing Standards
FISMA	Federal Information Security Modernization Act
FMCSA	Federal Motor Carrier Safety Administration
FMEA	Failure Mode & Effects Analysis
FRA	Federal Railroad Administration
FTA	Federal Transit Administration
FTP	File Transfer Protocol
GCC	Government Coordinating Council
GCIP	GIAC Critical Infrastructure Protection

CIAC	Clabel Information Assumption Contification
GIAC	Global Information Assurance Certification
GICSP	Global Industrial Cyber Security Professional
GPS	Global Positioning System
GRID	GIAC Response and Industrial Defense
HART	Highway Addressable Remote Transducer Protocol
HC3	Health Sector Cybersecurity Coordination Center
HHS	Health and Human Services
HMI	Human-Machine Interface
HR	Human Resources
HSIN	Homeland Security Information Network
HSIN-CI	Homeland Security Information Network - Critical Infrastructure
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
HVAC	Heating, Ventilation, and Air Conditioning
I/O	Input/Output
I3P	Institute for Information Infrastructure Protection
IAARC	International Association for Automation and Robotics in Construction
IACS	Industrial Automation and Control System
IAEA	International Atomic Energy Agency
ICCP	Inter-control Center Communications Protocol
ICS	Industrial Control System
ICSJWG	Industrial Control Systems Joint Working Group
ICSS	Integrated Control and Safety Systems
ID	Identification
IDS	Intrusion Detection System
IEC	International Electrotechnical Commission
IED	Intelligent Electronic Device
IEEE	Institute of Electrical and Electronics Engineers
IES	IEEE Industrial Electronics Society
IETF	Internet Engineering Task Force
IFIP	International Federation for Information Processing
IIC	Industrial Internet Consortium, Industrial Internet of Things Consortium
IIoT	Industrial Internet of Things
INL	Idaho National Laboratory
	-

IoT	Internet of Things
IP	Internet Protocol
IPS	Intrusion Prevention System
IPsec	Internet Protocol Security
IR	Incident Response
ISA	International Society of Automation
ISAC	International Sharing and Analysis Center
ISCM	Information Security Continuous Monitoring
ISO	International Organization for Standardization
IT	Information Technology
ITL	Information Technology Laboratory
LAN	Local Area Network
LDAP	Lightweight Directory Access Protocol
LOGIIC	Linking the Oil and Gas Industry to Improve Cybersecurity
MAC	Media Access Control
MARAD	Maritime Administration
MBR	Master Boot Record
MCAA	Measurement, Control, & Automation Association
MFA	Multi-Factor Authentication
MIB	Management Information Base
ML	Machine Learning
MTU	Master Terminal Unit
NAM	National Association of Manufacturers
NAWC	National Association of Water Companies
NCC	National Coordinating Center for Communications
NEA	Nuclear Energy Agency
NEI	Nuclear Energy Institute
NERC	North American Electric Reliability Corporation
NESCOR	National Electric Sector Cybersecurity Resource
NFS	Network File System
NFU	National Farmers Union
NGFW	Next Generation Firewall
NHTSA	National Highway Traffic Safety Administration
NICE	National Initiative for Cybersecurity Education

NIH	National Institutes of Health
NIMS	National Incident Management System
NIST	National Institute of Standards and Technology
NISTIR	National Institute of Standards and Technology Internal Report, National Institute of Standards and Technology Internal or Interagency Report
NITAAC	National Institutes of Health Information Technology Acquisition and Assessment Center
NRC	United States Nuclear Regulatory Commission
NREL	National Renewable Energy Laboratory
NTP	Network Time Protocol
NTSB	National Transportation Safety Board
NVD	National Vulnerability Database
OEM	Original Equipment Manufacturer
OMB	Office of Management and Budget
OPC	Open Platform Communications
OS	Operating System
OSI	Open Systems Interconnection
OT	Operational Technology
PACS	Physical Access Control Systems, Picture Archiving and Communications Systems
PC	Personal Computer
PERA	Purdue Enterprise Reference Architecture
PES	IEEE Power & Energy Society
PHA	Process Hazard Analysis
PHM4SM	Prognostics and Health Management for Reliable Operations in Smart Manufacturing
PHMSA	Pipeline and Hazardous Materials Safety Administration
PID	Proportional-Integral-Derivative
PIN	Personal Identification Number
PIV	Personal Identity Verification
PLC	Programmable Logic Controller
PNNL	Pacific Northwest National Laboratory
PNT	Positioning, Navigation, and Timing
PPD	Presidential Policy Directive
PRAM	Privacy Risk Assessment Methodology
PSCCC	IEEE Power System Communications and Cybersecurity

PSS	Process Safety Shutdown
РТ	Pressure Transmitter
PTP	Precision Time Protocol
R&D	Research & Development
RAS	IEEE Robotics & Automation Society
RBAC	Role-Based Access Control
RDP	Remote Desktop Protocol
RF	Radio Frequency
RFC	Request for Comments
RFID	Radio Frequency Identification
RMF	Risk Management Framework
RPC	Remote Procedure Call
RPO	Recovery Point Objective
RTO	Recovery Time Objective
RTOS	Real-Time Operating System
RTU	Remote Terminal Unit
S4	SCADA Security Scientific Symposium
SBOM	Software Bill of Materials
SBU	Sensitive But Unclassified
SC	Security Category
SCADA	Supervisory Control and Data Acquisition
SCAI	Safety, Controls, Alarms, and Interlocks
SCC	Sector Coordinating Council
SD	Secure Digital
SDLC	Software Development Life Cycle, System Development Life Cycle
SDN	Software-Defined Networking
SEPA	Smart Electric Power Alliance
SGCC	Smart Grid Cybersecurity Committee
SHA	Secure Hash Algorithm
SIEM	Security Information and Event Management
SIF	Safety Instrumented Function
SIS	Safety Instrumented System
SOC	Security Operations Center
SOCMA	Society of Chemical Manufacturers and Affiliates

SP	Special Publication
SPAN	Switched Port Analyzer
SQL	Structured Query Language
SSA	Sector-Specific Agency
SSCP	Secure SCADA Communications Protocol
SSH	Secure Shell
SSID	Service Set Identifier
SSL	Secure Sockets Layer
SSPP	Substation Serial Protection Protocol
TC	Technical Committee
ТСР	Transmission Control Protocol
TCP/IP	Transmission Control Protocol/Internet Protocol
TFTP	Trivial File Transfer Protocol
TIP	Technical Information Paper
TLS	Transport Layer Security
TLV	Type, Length, Value
TPM	Trusted Platform Module
TSA	Transportation Security Administration
TT	Temperature Transmitter
UDP	User Datagram Protocol
UPS	Uninterruptible Power Supply
U.S.	United States
USB	Universal Serial Bus
USDA	United States Department of Agriculture
VAV	Variable Air Volume
VDP	Vulnerability Disclosure Policy
VLAN	Virtual Local Area Network
VoIP	Voice over Internet Protocol
VPN	Virtual Private Network
VTS	IEEE Vehicular Technology Society
WAF	Web Application Firewall
WAN	Wide Area Network
WG	Working Group
WiFi	Wireless Fidelity

WINS World Institute of Nuclear Security

ZTA Zero Trust Architecture

3545

3546 Appendix B—Glossary

3547 Selected terms used in this publication are defined below. Source references are included for 3548 certain definitions.

Access control list [RFC4949] (adapted)	A mechanism that implements access control for a system resource by enumerating the identities of the system entities that are permitted to access the resources.
Actuator	A device for moving or controlling a mechanism or system. It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g., a printer driver, robot control system), or a human or other agent.
Alarm [ANSI-ISA-5-1]	A device or function that signals the existence of an abnormal condition by making an audible or visible discrete change, or both, so as to attract attention to that condition.
Antivirus tools	Software products and technology used to detect malicious code, prevent it from infecting a system, and remove malicious code that has infected the system.
Attack	An attempt to gain unauthorized access to system services, resources, or information, or an attempt to compromise system integrity, availability, or confidentiality.
Authentication [FIPS200]	Verifying the identity of a user, process, or device, often as a prerequisite to allowing access to resources in an information system.
Authorization [RFC4949] (adapted)	The right or a permission that is granted to a system entity to access a system resource.
Backdoor	An undocumented way of gaining access to a computer system. A backdoor is a potential security risk.
Buffer overflow [SP800-28]	A condition at an interface under which more input can be placed into a buffer or data holding area than the capacity allocated, overwriting other information. Adversaries exploit such a condition to crash a system or to insert specially crafted code that allows them to gain control of the system.
Cleartext	Information that is not encrypted.
Communications router	A communications device that transfers messages between two networks. Common uses for routers include connecting a LAN to a WAN, and connecting MTUs and RTUs to a long-distance network medium for SCADA communication.

Confidentiality [USC44-3552] (adapted)	Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information.
Configuration (of a system or device)	Step in system design; for example, selecting functional units, assigning their locations, and defining their interconnections. SOURCE: IEC/PAS 62409
Configuration control [CNSS4009] (adapted)	Process for controlling modifications to hardware, firmware, software, and documentation to ensure the information system is protected against improper modifications before, during, and after system implementation.
Control	The part of the OT system used to perform the monitoring and control of the physical process. This includes all control servers, field devices, actuators, sensors, and their supporting communication systems.
Control algorithm [ISADICT]	A mathematical representation of the control action to be performed.
Control center [ANSI-ISA-51-1]	An equipment structure or group of structures from which a process is measured, controlled, and/or monitored.
Control loop	A control loop consists of sensors for measurement, controller hardware such as PLCs, actuators such as control valves, breakers, switches and motors, and the communication of variables. Controlled variables are transmitted to the controller from the sensors. The controller interprets the signals and generates corresponding manipulated variables, based on set points, which it transmits to the actuators. Process changes from disturbances result in new sensor signals, identifying the state of the process, to again be transmitted to the controller.
Control network	Those networks of an enterprise typically connected to equipment that controls physical processes and that is time or safety critical. The control network can be subdivided into zones, and there can be multiple separate control networks within one enterprise and site. SOURCE: ISA99
Control server	A controller that also acts as a server that hosts the control software that communicates with lower-level control devices, such as remote terminal units (RTUs) and programmable logic controllers (PLCs), over an OT network. In a SCADA system, this is often called a SCADA server, MTU, or supervisory controller.
Control system	A system in which deliberate guidance or manipulation is used to achieve a prescribed value for a variable. Control systems include SCADA, DCS, PLCs, BAS and other types of OT measurement and control systems.

Controlled variable [ISADICT]	The variable that the control system attempts to keep at the set point value. The set point may be constant or variable.
Controller [ANSI-ISA-51-1]	A device or program that operates automatically to regulate a controlled variable.
Cycle time [ISADICT]	The time, usually expressed in seconds, for a controller to complete one control loop where sensor signals are read into memory, control algorithms are executed, and corresponding control signals are transmitted to actuators that create changes the process resulting in new sensor signals.
Data diode	A network appliance or device allowing data to travel only in one direction. Also referred to as a unidirectional gateway, deterministic one- way boundary device or unidirectional network.
Data historian	A centralized database supporting data analysis using statistical process control techniques.
Database [IR6859] (adapted)	A repository of information that usually holds plant-wide information including process data, recipes, personnel data, and financial data.
Demilitarized zone [SP800-41r1]	An interface on a routing firewall that is similar to the interfaces found on the firewall's protected side. Traffic moving between the DMZ and other interfaces on the protected side of the firewall still goes through the firewall and can have firewall protection policies applied.
Denial of service [RFC4949]	The prevention of authorized access to a system resource or the delaying of system operations and functions.
Diagnostics [ISADICT]	Information concerning known failure modes and their characteristics. Such information can be used in troubleshooting and failure analysis to help pinpoint the cause of a failure and help define suitable corrective measures.
Disaster recovery plan [SP800-34r1] (adapted)	A written plan for processing critical applications in the event of a major hardware or software failure or destruction of facilities.
Discrete process [ISADICT]	A type of process where a specified quantity of material moves as a unit (part or group of parts) between work stations and each unit maintains its unique identity.
Distributed control system [ISADICT]	In a control system, refers to control achieved by intelligence that is distributed about the process to be controlled, rather than by a centrally located single unit.
Disturbance [ANSI-ISA-51-1]	An undesired change in a variable being applied to a system that tends to adversely affect the value of a controlled variable.

Domain [RFC4949] (adapted)	An environment or context that includes a set of system resources and a set of system entities that have the right to access the resources as defined by a common security policy, security model, or security architecture.
Encryption [RFC4949] (adapted)	Cryptographic transformation of data (called "plaintext") into a form (called "ciphertext") that conceals the data's original meaning to prevent it from being known or used. If the transformation is reversible, the corresponding reversal process is called "decryption," which is a transformation that restores encrypted data to its original state.
Enterprise	An organization that coordinates the operation of one or more processing sites. SOURCE: ANSI/ISA-88.01-1995
Fault tolerant	Of a system, having the built-in capability to provide continued, correct execution of its assigned function in the presence of a hardware and/or software fault.
Field device	Equipment that is connected to the field side on an ICS. Types of field devices include RTUs, PLCs, actuators, sensors, HMIs, and associated communications.
Field site	A subsystem that is identified by physical, geographical, or logical segmentation within the ICS. A field site may contain RTUs, PLCs, actuators, sensors, HMIs, and associated communications.
Fieldbus	A digital, serial, multi-drop, two-way data bus or communication path or link between low-level industrial field equipment such as sensors, transducers, actuators, local controllers, and even control room devices. Use of fieldbus technologies eliminates the need of point-to-point wiring between the controller and each device. A protocol is used to define messages over the fieldbus network with each message identifying a particular sensor on the network.
File Transfer Protocol	An Internet standard for transferring files over the Internet. FTP programs and utilities are used to upload and download Web pages, graphics, and other files between local media and a remote server which allows FTP access.
Firewall [RFC4949]	An inter-network gateway that restricts data communication traffic to and from one of the connected networks (the one said to be "inside" the firewall) and thus protects that network's system resources against threats from the other network (the one that is said to be "outside" the firewall).
Human-machine interface [IR6859]	The hardware or software through which an operator interacts with a controller. An HMI can range from a physical control panel with buttons and indicator lights to an industrial PC with a color graphics display running dedicated HMI software.
Identification	The process of verifying the identity of a user, process, or device, usually as a prerequisite for granting access to resources in an IT system.

[SP800-47]	
Incident [FIPS200]	An occurrence that actually or potentially jeopardizes the confidentiality, integrity, or availability of an information system or the information the system processes, stores, or transmits or that constitutes a violation or imminent threat of violation of security policies, security procedures, or acceptable use policies.
Industrial control system	General term that encompasses several types of control systems, including supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as programmable logic controllers (PLC) often found in the industrial sectors and critical infrastructures. An ICS consists of combinations of control components (e.g., electrical, mechanical, hydraulic, pneumatic) that act together to achieve an industrial objective (e.g., manufacturing, transportation of matter or energy).
Information security program plan [OMB-A130]	Formal document that provides an overview of the security requirements for an organization-wide information security program and describes the program management controls and common controls in place or planned for meeting those requirements.
Input/output [ISADICT]	A general term for the equipment that is used to communicate with a computer as well as the data involved in the communications.
Insider	An entity inside the security perimeter that is authorized to access system resources but uses them in a way not approved by those who granted the authorization.
Insider Integrity [USC44_3552] (adapted)	resources but uses them in a way not approved by those who granted the
Integrity [USC44_3552]	resources but uses them in a way not approved by those who granted the authorization. Guarding against improper information modification or destruction, and
Integrity [USC44_3552] (adapted) Intelligent electronic device	resources but uses them in a way not approved by those who granted the authorization. Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity. Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic
Integrity [USC44_3552] (adapted) Intelligent electronic device [AGA12] Internet [RFC4949]	resources but uses them in a way not approved by those who granted the authorization. Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity. Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers). The single interconnected worldwide system of commercial, government, educational, and other computer networks that share the set of protocols specified by the Internet Architecture Board (IAB) and the name and address spaces managed by the Internet Corporation for
Integrity [USC44_3552] (adapted) Intelligent electronic device [AGA12] Internet [RFC4949] (adapted) Intrusion detection system [RFC4949]	resources but uses them in a way not approved by those who granted the authorization. Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity. Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers). The single interconnected worldwide system of commercial, government, educational, and other computer networks that share the set of protocols specified by the Internet Architecture Board (IAB) and the name and address spaces managed by the Internet Corporation for Assigned Names and Numbers (ICANN). A security service that monitors and analyzes network or system events for the purpose of finding, and providing real-time or near real-time warning of, attempts to access system resources in an unauthorized
Integrity [USC44_3552] (adapted) Intelligent electronic device [AGA12] Internet [RFC4949] (adapted) Intrusion detection system [RFC4949] (adapted)	resources but uses them in a way not approved by those who granted the authorization. Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity. Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers). The single interconnected worldwide system of commercial, government, educational, and other computer networks that share the set of protocols specified by the Internet Architecture Board (IAB) and the name and address spaces managed by the Internet Corporation for Assigned Names and Numbers (ICANN). A security service that monitors and analyzes network or system events for the purpose of finding, and providing real-time or near real-time warning of, attempts to access system resources in an unauthorized manner.

Key logger	A program designed to record which keys are pressed on a computer keyboard used to obtain passwords or encryption keys and thus bypass other security measures.
Local area network	A group of computers and other devices dispersed over a relatively limited area and connected by a communications link that enables any device to interact with any other on the network.
Machine controller [IR6859]	A control system/motion network that electronically synchronizes drives within a machine system instead of relying on synchronization via mechanical linkage.
Maintenance [ISADICT]	Any act that either prevents the failure or malfunction of equipment or restores its operating capability.
Malware [SP800-53r5] (adapted)	Software or firmware intended to perform an unauthorized process that will have adverse impact on the confidentiality, integrity, or availability of an information system. A virus, worm, Trojan horse, or other code- based entity that infects a host.
Manipulated variable [ISADICT]	In a process that is intended to regulate some condition, a quantity or a condition that the control alters to initiate a change in the value of the regulated condition.
Master terminal unit	See Control Server.
Modem [IR6859]	A device used to convert serial digital data from a transmitting terminal to a signal suitable for transmission over a telephone channel to reconvert the transmitted signal to serial digital data for the receiving terminal.
Operating system [ISADICT]	An integrated collection of service routines for supervising the sequencing of programs by a computer. An operating system may perform the functions of input/output control, resource scheduling, and data management. It provides application programs with the fundamental commands for controlling the computer.
Operational controls [FIPS200]	The security controls (i.e., safeguards or countermeasures) for an information system that are primarily implemented and executed by people (as opposed to systems).
Operational technology	A broad range of programmable systems and devices that interact with the physical environment (or manage devices that interact with the physical environment). These systems and devices detect or cause a direct change through monitoring and/or control of devices, processes, and events. Examples include industrial control systems, building automation systems, transportation systems, physical access control systems, physical environment monitoring systems, and physical environment measurement systems.
Password	A string of characters (letters, numbers, and other symbols) used to authenticate an identity or to verify access authorization.

[FIPS140-2]	
Phishing	Tricking individuals into disclosing sensitive personal information by claiming to be a trustworthy entity in an electronic communication (e.g., internet web sites).
Plant	The physical elements necessary to support the physical process. This can include many of the static components not controlled by the ICS; however, the operation of the ICS may impact the adequacy, strength, and durability of the plant's components.
Port	The entry or exit point from a computer for connecting communications or peripheral devices.
Port scanning	Using a program to remotely determine which ports on a system are open (e.g., whether systems allow connections through those ports).
Predisposing condition [SP800-30r1]	A condition that exists within an organization, a mission/business process, enterprise architecture, or information system including its environment of operation, which contributes to (i.e., increases or decreases) the likelihood that one or more threat events, once initiated, will result in undesirable consequences or adverse impact to organizational operations and assets, individuals, other organizations, or the Nation.
Pressure regulator [IR6859]	A device used to control the pressure of a gas or liquid.
Pressure sensor [IR6859] (adapted)	A sensor system that produces an electrical signal related to the pressure acting on it by its surrounding medium. Pressure sensors can also use differential pressure to obtain level and flow measurements.
Printer [IR6859] (adapted)	A device that converts digital data to human-readable text on a paper medium.
Process controller [IR6859] (adapted)	A type of computer system, typically rack-mounted, that processes sensor input, executes control algorithms, and computes actuator outputs.
Programmable logic controller [ISADICT]	A solid-state control system that has a user-programmable memory for storing instructions for the purpose of implementing specific functions such as I/O control, logic, timing, counting, three mode (PID) control, communication, arithmetic, and data and file processing.
Protocol [RFC4949]	A set of rules (i.e., formats and procedures) to implement and control some type of association (e.g., communication) between systems.
Protocol analyzer [ISADICT]	A device or software application that enables the user to analyze the performance of network data so as to ensure that the network and its associated hardware/software are operating within network specifications.

Real-time	Pertaining to the performance of a computation during the actual time that the related physical process transpires so that the results of the computation can be used to guide the physical process.
Redundant control server [IR6859]	A backup to the control server that maintains the current state of the control server at all times.
Relay [ISADICT]	An electromechanical device that completes or interrupts an electrical circuit by physically moving conductive contacts. The resultant motion can be coupled to another mechanism such as a valve or breaker.
Remote access [SP800-53r5]	Access to an organizational system by a user (or a process acting on behalf of a user) communicating through an external network.
Remote diagnostics	Diagnostics activities conducted by individuals communicating external to an information system security perimeter.
Remote maintenance [SP800-53r5]	Maintenance activities conducted by individuals communicating through an external network.
Remote terminal unit [IR6859]	A computer with radio interfacing used in remote situations where communications via wire is unavailable. Usually used to communicate with remote field equipment. PLCs with radio communication capabilities are also used in place of RTUs.
Risk [FIPS200] (adapted)	The level of impact on agency operations (including mission, functions, image, or reputation), agency assets, or individuals resulting from the operation of an information system, given the potential impact of a threat and the likelihood of that threat occurring.
Risk assessment [SP800-39] (adapted)	The process of identifying risks to agency operations (including mission, functions, image, or reputation), agency assets, or individuals by determining the probability of occurrence, the resulting impact, and additional security controls that would mitigate this impact. Part of risk management, synonymous with risk analysis. Incorporates threat and vulnerability analyses.
Risk management [FIPS200] (adapted)	The process of managing risks to organizational operations (including mission, functions, image, reputation), organizational assets, individuals, other organizations, and the Nation, resulting from the operation of an information system, and includes: (i) the conduct of a risk assessment; (ii) the implementation of a risk mitigation strategy; and (iii) employment of techniques and procedures for the continuous monitoring of the security state of the information system.
Router [RFC4949] (adapted)	A computer that is a gateway between two networks at OSI layer 3 and that relays and directs data packets through that inter-network. The most common form of router operates on IP packets.
Safety instrumented system [ANSI-ISA-84]	A system that is composed of sensors, logic solvers, and final control elements whose purpose is to take the process to a safe state when predetermined conditions are violated. Other terms commonly used include emergency shutdown system (ESS), safety shutdown system (SSD), and safety interlock system (SIS).
---	--
SCADA server	The device that acts as the master in a SCADA system.
Security audit [ISO7498-1]	Independent review and examination of a system's records and activities to determine the adequacy of system controls, ensure compliance with established security policy and procedures, detect breaches in security services, and recommend any changes that are indicated for countermeasures.
Security controls [FIPS199]	The management, operational, and technical controls (i.e., safeguards or countermeasures) prescribed for an information system to protect the confidentiality, integrity, and availability of the system and its information.
Security plan [SP800-18r1]	Formal document that provides an overview of the security requirements for an information system and describes the security controls in place or planned for meeting those requirements.
Security policy	Security policies define the objectives and constraints for the security program. Policies are created at several levels, ranging from organization or corporate policy to specific operational constraints (e.g., remote access). In general, policies provide answers to the questions "what" and "why" without dealing with "how." Policies are normally stated in terms that are technology-independent. SOURCE: ISA99
Sensor [ISADICT]	A device that produces a voltage or current output that is representative of some physical property being measured (e.g., speed, temperature, flow).
Set point [ISADICT]	An input variable that sets the desired value of the controlled variable. This variable may be manually set, automatically set, or programmed.
Single loop controller [IR6859]	A controller that controls a very small process or a critical process.
Social engineering [SP800-61r2]	An attempt to trick someone into revealing information (e.g., a password) that can be used to attack systems or networks.
Supervisory control [ISADICT]	A term that is used to imply that the output of a controller or computer program is used as input to other controllers. See <i>Control Server</i> .

Supervisory control and data acquisition [ISADICT]	A generic name for a computerized system that is capable of gathering and processing data and applying operational controls over long distances. Typical uses include power transmission and distribution and pipeline systems. SCADA was designed for the unique communication challenges (e.g., delays, data integrity) posed by the various media that must be used, such as phone lines, microwave, and satellite. Usually shared rather than dedicated.
Technical controls [FIPS200]	The security controls (i.e., safeguards or countermeasures) for an information system that are primarily implemented and executed by the information system through mechanisms contained in the hardware, software, or firmware components of the system.
Threat [FIPS200] (adapted)	Any circumstance or event with the potential to adversely impact agency operations (including mission, functions, image, or reputation), agency assets, or individuals through an information system via unauthorized access, destruction, disclosure, modification of information, and/or denial of service.
Threat event [SP800-30r1]	An event or situation that has the potential for causing undesirable consequences or impact.
Threat source [FIPS200]	The intent and method targeted at the intentional exploitation of a vulnerability or a situation and method that may accidentally trigger a vulnerability. <i>Synonymous with threat agent.</i>
Transmission Control Protocol	TCP is one of the main protocols in TCP/IP networks. Whereas the IP protocol deals only with packets, TCP enables two hosts to establish a connection and exchange streams of data. TCP guarantees delivery of data and also guarantees that packets will be delivered in the same order in which they were sent.
Trojan horse [RFC4949]	A computer program that appears to have a useful function, but also has a hidden and potentially malicious function that evades security mechanisms, sometimes by exploiting legitimate authorizations of a system entity that invokes the program.
Unauthorized access [SP800-61]	A person gains logical or physical access without permission to a network, system, application, data, or other resource.
Unidirectional gateway	Unidirectional gateways are a combination of hardware and software. The hardware permits data to flow from one network to another, but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices.
Valve [ISADICT]	An in-line device in a fluid-flow system that can interrupt flow, regulate the rate of flow, or divert flow to another branch of the system.
Virtual private network	A restricted-use, logical (i.e., artificial or simulated) computer network that is constructed from the system resources of a relatively public,

[RFC4949] (adapted)	physical (i.e., real) network (such as the Internet), often by using encryption (located at hosts or gateways), and often by tunneling links of the virtual network across the real network.
Virus [RFC4949] (adapted)	A hidden, self-replicating section of computer software, usually malicious logic, that propagates by infecting (i.e., inserting a copy of itself into and becoming part of) another program. A virus cannot run by itself; it requires that its host program be run to make the virus active.
Vulnerability [FIPS200]	Weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat source.
Wide area network	A physical or logical network that provides data communications to a larger number of independent users than are usually served by a local area network (LAN) and that is usually spread over a larger geographic area than that of a LAN.
Wireless device	Any device that can connect to an OT network via radio or infrared waves, usually to collect or monitor data, but also in some cases to modify control set points.
Workstation [IR6859]	A computer used for tasks such as programming, engineering, and design.
Worm [RFC4949] (adapted)	A computer program that can run independently, can propagate a complete working version of itself onto other hosts on a network, and may consume computer resources destructively.

3550 Appendix C—Threat Sources, Vulnerabilities, and Incidents

3551 Several terms are used to describe the inter-related concepts of threat, threat source, threat event, and incident. A *threat* is any circumstance or event with the potential to adversely impact 3552 3553 organizational operations (including mission, functions, image, or reputation), organizational 3554 assets, individuals, other organizations, or the Nation through an information system via 3555 unauthorized access, destruction, disclosure, modification of information, and/or denial of 3556 service. Threats have some intent or method that may exploit a vulnerability through either 3557 intentional or unintentional means. This intent or method is referred to as the threat source. A vulnerability is a weakness in an information system (including an OT), system security 3558 procedures, internal controls, or implementation that could be exploited or triggered by a threat 3559 source. A threat event is an event or situation that has the potential for causing undesirable 3560 consequences or impact. When a threat event occurs it becomes an *incident* that actually or 3561 3562 potentially jeopardizes the confidentiality, integrity, or availability of an information system or 3563 the information the system processes, stores, or transmits or that constitutes a violation or 3564 imminent threat of violation of security policies, security procedures, or acceptable use policies.

This appendix explores OT-specific threat sources, vulnerabilities, and incidents. It also cites examples of OT-specific incidents to illustrate their potential impact. Each organization calculates risk based on the specific threats, vulnerabilities, and impact and likelihood of incidents within their environment.

3569 C.1 Threat Sources

3570 Threats to OT can come from numerous sources, which can be classified as adversarial, 3571 accidental, structural, or environmental. Table 13 lists and defines known threat sources to OT. These threat sources should be considered part of the risk management strategy. The threat 3572 source must be well understood in order to define and implement adequate protection. For 3573 3574 example, environmental events (e.g., floods, earthquakes) are well understood, but may vary in their magnitude, frequency, and their ability to compound other interconnected events. However, 3575 adversarial threats depend on the resources available to the adversary and the emergence of 3576 3577 previously unknown vulnerabilities or attacks.

3578

Table 13: Threats to OT

Type of Threat Source	Description	Characteristics
ADVERSARIAL - Bot-network operators - Criminal groups - Hackers/hacktivists - Insiders - Nations - Terrorists	Individuals, groups, organizations, or nation-states that seek to exploit the organization's dependence on cyber resources (e.g., information in electronic form, information and communications technologies, and the communications and information-handling capabilities provided by those technologies)	Capability, Intent, Targeting
ACCIDENTAL - User - Privileged User/Administrator	Erroneous actions taken by individuals in the course of executing their everyday responsibilities (e.g., operator accidentally typing 100 instead of 10 as a set point; engineer making a change in the production environment while thinking that they are in the development environment)	Range of effects

Type of Threat Source	Description	Characteristics
 STRUCTURAL Hardware failure Processors, input/output cards, communications cards Networking equipment Power supply Sensor, final element HMI, displays Software failure OS General-purpose applications Mission-specific applications Environmental controls failure Temperature control Humidity control Communications degradation Wireless 	Failures of equipment, environmental controls, or software due to aging, resource depletion, or other circumstances which exceed expected operating parameters. Includes failures of critical infrastructures within the control of the organization.	Range of effects
 Wired ENVIRONMENTAL Natural or human-caused disaster Fire Flood/tsunami Windstorm/tornado Hurricane Earthquake Bombing Animal interference Solar flares, meteorites Critical Infrastructure failure Telecommunications Electrical power Transportation Water/wastewater 	Natural disasters and failures of critical infrastructures on which the organization depends, but which are outside the control of the organization. Note: Natural and human-caused disasters can also be characterized in terms of their severity and/or duration. However, because the threat source and the threat event are strongly identified, severity and duration can be included in the description of the threat event (e.g., Category 5 hurricane causes extensive damage to the facilities housing mission- critical systems, making those systems unavailable for three weeks).	Range of effects

3580 C.2 Vulnerabilities and Predisposing Conditions

3581 Vulnerabilities are weaknesses in information systems, system procedures, controls, or 3582 implementations that can be exploited by a threat source. *Predisposing conditions* are properties of the organization, mission/business process, architecture, or information systems that 3583 3584 contribute to the likelihood of a threat event. The order of these vulnerabilities and predisposing conditions does not reflect priority in terms of likelihood of occurrence or severity of impact. 3585 Additionally, the vulnerabilities and predisposing conditions identified in this section should not 3586 3587 be considered a complete list; it should also not be assumed that these issues are found within 3588 every OT environment.

The vulnerabilities and predisposing conditions are grouped according to where they exist, such as in the organization's policy and procedures or the inadequacy of security mechanisms

- 3591 implemented in hardware, firmware, and software. The former is referred to as being in the
- 3592 organization and the latter as being in the system. Understanding the source of vulnerabilities
- and predisposing conditions can assist in determining optimal mitigation strategies. Deeper
- analysis may uncover that causes and observations may not be one-to-one—that is, some
- 3595 underlying causes may exhibit multiple symptoms and some symptoms may come from more
- than one cause.

Any given OT will usually exhibit a subset of the identified vulnerabilities in this appendix but may also contain additional vulnerabilities and predisposing conditions unique to the particular technology or implementation that do not appear in this appendix. Specific current information on OT vulnerabilities can be researched at the <u>CISA website</u>. Many vendors publish notifications and patches to improve both reliability and security which are not always found on the CISA website. It is beneficial to maintain relationships with the vendors in order to stay up-to-date with known vulnerabilities.

- 3604 Some vulnerabilities and predisposing conditions can be mitigated; others can only be accepted
- and controlled by appropriate countermeasures but will result in some residual risk to the OT
- environment. For example, some existing policies and procedures may be changed with a levelof effort that the organization considers acceptable; others are more expeditiously dealt with by
- 3608 instituting additional policies and procedures.
- 3609 Vulnerabilities in products and services acquired from outside the organization are rarely under
- 3610 the direct control of the organization. Changes may be influenced by market forces, but this is a
- 3611 slow and indirect approach. Instead, the organization may change predisposing conditions to
- 3612 reduce the likelihood that a systemic vulnerability will be exploited.

3613 C.2.1 Policy and Procedure Vulnerabilities and Predisposing Conditions

- 3614 Vulnerabilities and predisposing conditions are often introduced into the OT environment
- 3615 because of incomplete, inappropriate, or nonexistent security policy, including its
- 3616 documentation, implementation guides (e.g., procedures), and enforcement. Management support
- 3617 of security policy and procedures is the cornerstone of any security program. Organization
- 3618 security policy can reduce vulnerabilities by mandating and enforcing proper conduct. Written
- 3619 policy and procedures are mechanisms for informing staff and stakeholders of decisions about
- 3620 behavior that is beneficial to the organization. From this perspective, policy is an educational and
- 3621 instructive way to reduce vulnerabilities. Enforcement is partner to policy, encouraging people to
- 3622 do the proper thing. Various forms of corrective action are the usual consequences to personnel
- 3623 not following policy and procedures. Policies should be explicit about the consequences to
- 3624 individuals or organizations that do not conform.
- 3625 There is usually a complex policy and procedure environment that includes laws and regulations,
- 3626 overlapping jurisdictions and spheres of influence, economics, custom, and history. The larger
- 3627 enterprise is often subdivided into organizational units that should work together to reduce
- 3628 vulnerabilities. The scope and hierarchical relationship among policies and procedures needs to
- 3629 be managed for maximum effectiveness.

- 3630 Table 14 presents examples of observed policy and procedure vulnerabilities and predisposing
- 3631 conditions for OT.
- 3632

Table 14: Policy and Procedure Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Inadequate organizational ownership of risk assessments	Risk assessments should be performed with acknowledgement from appropriate levels within the organization. Lack of understanding of risk could lead to under-mitigated scenarios or inadequate funding and selection of controls.
Inadequate security policy for OT	Vulnerabilities are often introduced into the OT environment due to inadequate policies or the lack of policies specifically for OT system security. Controls and countermeasures should be derived from a risk assessment or policy. This ensures uniformity and accountability.
Inadequate OT security training and awareness program	A documented formal OT security training and awareness program is designed to keep staff up to date on organizational security policies and procedures as well as threats, industry cybersecurity standards, and recommended practices. Without adequate ongoing training on specific OT policies and procedures, staff cannot be expected to maintain a secure OT environment.
Lack of inventory management policy	Inventory policy and procedures should include installation, removal, and changes made to hardware, firmware, and software. An incomplete inventory could lead to unmanaged and unprotected devices within the OT environment.
Lack of configuration management policy	Lack of policy and procedures for OT configuration management can lead to an unmanageable and highly vulnerable inventory of hardware, firmware, and software.
Inadequate OT equipment implementation guidelines	Equipment implementation guidelines should be kept up to date and readily available. These guidelines are an integral part of security procedures in the event of an OT malfunction.
Lack of administrative mechanisms for security policy enforcement	Without accountability for enforcing policy, there's limited ability to ensure security policies are followed adequately. Administrative mechanisms should be in place to ensure accountability.
Inadequate review of the effectiveness of the OT security controls	Procedures and schedules should exist to determine the extent to which the security program and its constituent controls are implemented correctly, operating as intended, and producing the desired outcome with respect to meeting the security requirements for the OT. The examination is sometimes called an "audit," "evaluation," or "assessment." Policy should address the stage of the life cycle, purpose, technical expertise, methodology, and level of independence.
No OT-specific contingency plan	A contingency plan (e.g., business continuity plan, disaster recovery plan) should be prepared, tested, and available in the event of a major hardware or software failure or destruction of facilities. Lack of a specific plan for the OT could lead to extended downtimes and production loss.
Lack of adequate access control policy	Access control enforcement depends on policy that correctly models roles, responsibilities, and authorizations. The policy model must enable the way the organization functions.
Lack of adequate authentication policy	Authentication policies are needed to define when authentication mechanisms (e.g., passwords, smart cards) must be used, how strong they must be, and how they must be maintained. Without policy, systems might not have appropriate authentication controls, making unauthorized access to systems more likely. Authentication policies should be developed as part of an overall OT security program, taking into account the capabilities of the OT and its personnel to handle more complex passwords and other mechanisms.

Vulnerability	Description
Inadequate incident detection & response plan and procedures	Incident detection and response plans, procedures, and methods are necessary for rapidly detecting incidents, minimizing loss and destruction, preserving evidence for later forensic examination, mitigating the weaknesses that were exploited, and restoring services. Establishing a successful incident response capability includes continually monitoring for anomalies, prioritizing the handling of incidents, and implementing effective methods of collecting, analyzing, and reporting data.
Lack of redundancy for critical components	Lack of redundancy in critical components could provide single point of failure possibilities.

3634 C.2.2 System Vulnerabilities and Predisposing Conditions

3635 Security controls must clearly identify the systems to which they apply. Systems range widely in

size, scope, and capability. At the small end of the spectrum, a system may be an individual

hardware or software product or service. At the other end of the spectrum, we find large complex

3638 systems, systems-of-systems, and networks, all of which incorporate hardware architecture and

3639 software framework (including application frameworks), where the combination supports

3640 operations. An organization may choose to identify security zones such that security controls

3641 may be applied to all systems within the security zone.

3642 System vulnerabilities can occur in the hardware, firmware, and software used to build the OT.

3643 Sources of vulnerabilities include design flaws, development flaws, misconfigurations, poor

3644 maintenance, poor administration, and connections with other systems and networks. Many of

3645 the controls in the SP 800-53 and the OT overlay in Appendix F specify what the system must do

to mitigate these vulnerabilities.

Vulnerabilities can also exist in the auxiliary components that support the OT systems. A subset of those vulnerabilities with the potential to impact the physical process are described in this section.

- 3650 The potential vulnerabilities and predisposing conditions commonly found within OT systems3651 are categorized into the following tables:
- **3652 Table 15:** Architecture and Design Vulnerabilities and Predisposing Conditions
- **3653 Table 16: Configuration and Maintenance Vulnerabilities and Predisposing Conditions**
- **3654 Table 17: Physical Vulnerabilities and Predisposing Conditions**
- 3655 Table 18: Software Development Vulnerabilities and Predisposing Conditions
- Table 19: Communication and Network Configuration Vulnerabilities and Predisposing
 Conditions
- Table 20: Sensor, Final Element, and Asset Management Vulnerabilities and Predisposing
 Conditions

Table 15: Architecture and Design Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Inadequate incorporation of security into architecture and design	Incorporating security into the OT architecture and design must start with budget and schedule designated for OT. The architectures must address the identification and authorization of users, access control mechanism, network topologies, and system configuration and integrity mechanisms.
Inadequate management of change allowing insecure architecture to evolve	The network infrastructure within the OT environment has often been developed and modified based on business and operational requirements, with little consideration for the potential security impacts of the changes. Over time, security gaps may have been inadvertently introduced within the infrastructure. Without remediation, these gaps may represent backdoors into the OT.
	Sensors and controllers that were historically simple devices are now often manufactured as intelligent devices. In some cases, sensors and controllers may be replaced with IIoT devices which allow direct internet connections. Security should be incorporated into change management for all OT devices, not just traditional IT components.
No security perimeter defined	If the OT does not have a security perimeter clearly defined, it is not possible to ensure that the necessary security controls are deployed and configured properly. This can lead to unauthorized access to systems and data, as well as other problems.
Control networks used for non- control traffic	Control and non-control traffic have different requirements, such as determinism and reliability. Having both types of traffic on a single network creates challenges for meeting the requirements of control traffic. For example, non-control traffic could inadvertently consume resources that control traffic needs, causing disruptions in OT functions.
Control network services dependent on a non-control network	When IT services such as Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) are used by control networks, they are often implemented in the IT network. This causes the OT network to become dependent on the IT network, which may not have the reliability and availability requirements needed by OT.
Inadequate collection of event data history	Forensic analysis depends on collection and retention of sufficient data. Without proper and accurate data collection, it might be impossible to determine what caused a security incident to occur. Incidents might go unnoticed, leading to additional damage and/or disruption. Regular security monitoring is also needed to identify problems with security controls, such as misconfigurations and failures. Event data for an OT environment could include physical process data, system use data, and network data.

3661

3662

Table 16: Configuration and Maintenance Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Hardware, firmware, and software not under asset management	The organization doesn't know what it has (e.g., make, model), where they are, or what version it has, resulting in an inconsistent and ineffective defense posture. To properly secure an OT, there should be an accurate inventory of the assets in the environment. Procedures should be in place to manage additions, deletions, and modifications of assets which include asset inventory management. These procedures are critical to executing business continuity and disaster recovery plans.

Vulnerability	Description
Hardware, firmware, and software not under configuration management	The organization doesn't know the patch management status, security settings, or configuration versions that it has, resulting in inconsistent and ineffective defense posture. A lack of configuration change management procedures can lead to security oversights, exposures, and risks. A process for controlling modifications to hardware, firmware, software, and documentation should be implemented to ensure an OT is protected against inadequate or improper modifications before, during, and after system implementation. To properly secure an OT, there should be an accurate listing or repository of the current configurations.
OS and vendor software patches may not be developed until significantly after security vulnerabilities are found	Because of the tight coupling between OT software and the underlying OT, changes must undergo expensive and time-consuming comprehensive regression testing. The elapsed time for such testing and subsequent distribution of updated software provides a long window of vulnerability. Vulnerability management procedures should include flexibility for interim alternative mitigations.
Vendor declines to develop patches for vulnerability	Out-of-date OSs and applications may contain newly discovered vulnerabilities that could be exploited. Security patch support may not be available for legacy OT, so vulnerability management procedures should include contingency plans for mitigating vulnerabilities where patches may never be available or replacement plans.
Lack of a vulnerability management program	Vulnerabilities not considered by the organization could result in exploitation. Vulnerability management procedures should be in place to determine a plan of action or inaction upon discovery of a vulnerability. Some OT considerations are: availability concerns may push patching until the next planned operational downtime; security patch support may not be available for OT systems that use outdated OSs; isolated systems may not require immediate patching; and OT exposed to the internet may need prioritized for patching.
Inadequate testing of security changes	Modifications to hardware, firmware, and software deployed without testing could compromise normal operation of the OT. Documented procedures should be developed for testing all changes for security impact. The live operational systems should never be used for testing. The testing of system modifications may need to be coordinated with system vendors and integrators.
Poor remote access controls	There are many reasons why an OT may need to be remotely accessed, including vendors and system integrators performing system maintenance functions, and also OT engineers accessing geographically remote system components. The concept of least privilege should be applied to remote access controls. Remote access capabilities must be adequately controlled to prevent unauthorized individuals from gaining access, or authorized individuals from gaining excessive access, to the OT.
Poor configurations are used	Improperly configured systems may leave unnecessary ports and protocols open. These unnecessary functions may contain vulnerabilities that increase the overall risk to the system. Using default configurations often exposes vulnerabilities and exploitable services. All settings should be examined.
Critical configurations are not stored or backed up	Procedures should be available for restoring OT configuration settings in the event of accidental or adversary-initiated configuration changes to maintain system availability and prevent loss of data. Documented procedures should be developed for maintaining configuration settings.
Data unprotected on portable device	If sensitive data (e.g., passwords, dial-up numbers) is stored in cleartext on portable devices such as laptops and mobile devices and these devices are lost or stolen, system security could be compromised. Policy, procedures, and mechanisms are required for protection.

Vulnerability	Description
Vendor default passwords are used	Most vendor default passwords are easy to discover within vendor product manuals, which are also available to adversaries. Using the default password can drastically increase OT vulnerability.
Passwords generation, use, and protection not in accord with policy	Password policy and procedures must be followed to be effective. Violations of password policy and procedures can increase OT vulnerability.
Inadequate access controls applied	Access controls must be matched to the way the organization allocates responsibilities and privilege to its personnel. Poorly specified access controls can result in giving an OT user too many or too few privileges. The following exemplify each case:
	 System configured with default access control settings gives an operator administrative privileges System configured improperly results in an operator being unable to take corrective actions in an emergency situation
Improper data linking	OT data storage systems may be linked with non-OT data sources. An example of this is database links, which allow data from one database (e.g., data historian) to be automatically replicated to others. Data linkage may create a vulnerability if it is not properly configured and may allow unauthorized data access or manipulation.
Malware protection not installed or up to date	Installation of malicious software, or malware, is a common attack. Malware protection software, such as antivirus software, should be kept current in a dynamic environment. Outdated malware protection software and definitions leave the system open to malware threats.
Malware protection implemented without sufficient testing	Malware protection software deployed without sufficient testing could impact normal operation of the OT and block the system from performing necessary control actions.
Denial of service (DoS)	OT software could be vulnerable to DoS attacks, resulting in the prevention of authorized access to a system resource or delaying system operations and functions.
Intrusion detection/prevention software not installed	Incidents can result in loss of system availability and integrity; the capture, modification, and deletion of data; and incorrect execution of control commands. IDS/IPS software may stop or prevent various types of attacks, including DoS attacks, and also identify attacked internal hosts, such as those infected with worms. IDS/IPS software must be tested prior to deployment to determine that it does not compromise normal operation of the OT.
Logs not maintained	Without proper and accurate logs, it might be impossible to determine what caused a security event to occur and perform adequate forensics.

3664

Table 17: Physical Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Unauthorized personnel have physical access to equipment	 Physical access to OT equipment should be restricted to only the necessary personnel, taking into account safety requirements such as emergency shutdown or restarts. Improper access to OT equipment can lead to any of the following: Physical theft of data and hardware Physical damage or destruction of data and hardware Modification of the operational process Unauthorized changes to the functional environment (e.g., data connections, unauthorized use of removable media, adding/removing resources) Disconnection of physical data links Undetectable interception of data (keystroke and other input logging)
Radio frequency, electromagnetic pulse (EMP), static discharge, brownouts, and voltage spikes	Some hardware used for OT systems is vulnerable to radio frequency and electromagnetic pulses (EMP), static discharge, brownouts, and voltage spikes. The impact can range from temporary disruption of command and control to permanent damage to circuit boards. Proper shielding, grounding, power conditioning, and/or surge suppression is recommended.
Lack of backup power	Without backup power to critical assets, a general loss of power will shut down the OT and could create an unsafe situation. Loss of power could also lead to insecure default settings. If the program file or data is stored in volatile memory, the process may not be able to restart after a power outage without appropriate backup power.
Loss of environmental control	Loss of environmental control (e.g., temperatures, humidity) could lead to equipment damage, such as processors overheating. Some processors will shut down to protect themselves; some may continue to operate but in a minimal capacity and may produce intermittent errors, continually reboot, or become permanently inoperable.
Unsecured physical ports	Unsecured universal serial bus (USB) and PS/2 ports could allow unauthorized connection of thumb drives, keystroke loggers, etc.

3665

3666

Table 18: Software Development Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Improper data validation	OT software may not properly validate user inputs or received data to ensure validity. Invalid data may result in numerous vulnerabilities including buffer overflows, command injections, cross-site scripting, and path traversals.
Installed security capabilities not enabled by default	Security capabilities that were installed with the product are useless if they are not enabled or at least identified as being disabled.
Inadequate authentication, privileges, and access control in software	Unauthorized access to configuration and programming software could provide the ability to corrupt a device.

3667

Table 19: Communication and Network Configuration Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Data flow controls not employed	Data flow controls, based on data characteristics, are needed to restrict which information is permitted between systems. These controls can prevent exfiltration of information and illegal operations.
Firewalls nonexistent or improperly configured	A lack of properly configured firewalls could permit unnecessary data to pass between networks, such as control and corporate networks, allowing attacks and malware to spread between networks, making sensitive data susceptible to monitoring/eavesdropping, and providing individuals with unauthorized access to systems.
Inadequate firewall and router logs	Without proper and accurate logs, it might be impossible to determine what caused a security incident to occur.
Standard, well-documented communication protocols are used in plaintext	Adversaries that can monitor the OT network activity can use a protocol analyzer or other utilities to decode the data transferred by protocols such as telnet, File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and Network File System (NFS). The use of such protocols also makes it easier for adversaries to perform attacks against OT and manipulate OT network activity.
Authentication of users, data or devices is substandard or nonexistent	Many OT protocols have no authentication at any level. Without authentication, there is the potential to replay, modify, or spoof data or to spoof devices such as sensors and user identities.
Use of unsecure OT protocols	OT protocols often have few or no security capabilities, such as authentication and encryption, to protect data from unauthorized access or tampering. Also, incorrect implementation of the protocols can lead to additional vulnerabilities.
Lack of integrity checking for communications	Integrity checks are not built into most OT protocols; adversaries could manipulate communications undetected. To ensure integrity, the OT can use lower-layer protocols (e.g., IPsec) that offer data integrity protection when traversing untrusted physical media.
Inadequate authentication between wireless clients and access points	Strong mutual authentication between wireless clients and access points is needed to ensure that legitimate OT clients do not connect to a rogue access point deployed by an adversary, and also to ensure that adversary clients do not connect to any of the OT wireless networks.
Inadequate data protection between wireless clients and access points	Sensitive data between wireless clients and access points should be protected using strong encryption to ensure that adversaries cannot gain unauthorized access to the unencrypted data.

3669

3670

Table 20: Sensor, Final Element, and Asset Management Vulnerabilities and Predisposing Conditions

Vulnerability	Description
Unauthorized physical access to sensors or final elements	Physical access to sensors and final elements allows for direct manipulation of the physical process. Many devices are configured on a fieldbus such that physical access to the sensor network allows for manipulation of controlling parameters. Physical access to the whole of the loop should be managed to prevent incidents.
Unauthorized wireless access to sensors or final elements	Wireless access to sensors and final elements allows for direct manipulation of the physical process. Many smart devices allow for wireless configuration (e.g., Bluetooth, WiFi, WirelessHART). Wireless access should be securely configured or disabled using hardware write- protect where possible to protect unauthorized modification of the sensors and final elements which are connected both to the physical process and to the OT environment.

Vulnerability	Description
Inappropriate segmentation of asset management system	Most architectures are designed for PLCs, RTUs, DCS, and SCADA controllers to manipulate the process, and for asset management systems to monitor the assets connected to the controllers. Many asset management systems also have the technical ability to modify the configuration of sensors and final elements, although modification may not be their primary function. The asset management system should be controlled appropriately based on its ability (or lack of ability) to manipulate the process.

3672 C.3 Threat Events and Incidents

3673 A threat event is an event or situation that could potentially cause an undesirable consequence or

impact to operations resulting from some threat source. In NIST SP 800-30 Rev. 1 [SP800-30r1],

3675 Appendix E identifies a broad set of threat events that could potentially impact information

3676 systems. The properties of OT may also present unique threat events, specifically addressing

3677 how the threat events can manipulate OT processes to cause physical damage. Table 21 provides

3678 an overview of potential OT threat events, leveraging MITRE's ATT&CK® for Industrial

3679 Control Systems [ATTACK-ICS].

3680

Table 21: Examples of Potential Threat Events

Threat Event	Description
Denial of Control	Temporarily prevents operators and engineers from interfacing with process controls. An affected process may still be operating during the period of control loss, but not necessarily in a desired state.
Manipulation of Control	Unauthorized changes made to programmed instructions in PLCs, RTUs, DCS, or SCADA controllers, alarm thresholds changed, or unauthorized commands issued to control equipment, which could potentially result in damage to equipment (if tolerances are exceeded), premature shutdown of processes (such as prematurely shutting down transmission lines), causing an environmental incident, or even disabling control equipment.
Spoofed Reporting Message	False information sent to an OT system operator either for evasion or to impair process control. The adversary could make the defenders and operators think that other errors are occurring in order to distract them from the actual source of the problem (i.e., alarm floods).
Theft of Operational Information	Adversaries may steal operational information for personal gain or to inform future operations.
Loss of Safety	Adversaries may target and disable safety system functions as a prerequisite to subsequent attack execution or to allow for future unsafe conditionals to go unchecked.
Loss of Availability	Adversaries may leverage malware to delete or encrypt critical data on HMIs, workstations, or databases.

3681

3682 Numerous OT incidents have been reported and documented. Descriptions of these events help

3683 demonstrate the severity of the threat sources, vulnerabilities, and impacts within the OT domain.

3684 As mentioned in Section C.2, the four broad categories of threat sources are adversarial,

3685 accidental, structural, and environmental. Often the incident can be the result of multiple threat

3686 sources (e.g., an environmental event causes a system failure, which is responded to incorrectly

3687 by an operator resulting in an accidental event). Provided below is a limited selection of reported

3688 incidents covering each of the four categories.

- The incidents have been additionally categorized into malicious or non-malicious, and direct or indirect to further distinguish the possible causes of OT incidents.
- 3691**M = Malicious**. The event was initiated by someone for a harmful purpose. The initiator3692may or may not have been targeting the OT or known the potential consequences.
- 3693 N = Non-malicious. There does not appear to be evidence that the initiating event was
 3694 intended to cause an incident.
- 3695 D = Direct. The event was designed to discover, inhibit, impair, or otherwise impact the
 3696 OT system.
- 3697 I = Indirect. The event was not believed to be designed to discover, inhibit, impair, or
 3698 otherwise impact the OT system. The OT system shut down or caused disruption as a
 3699 result of impact to the supporting infrastructure.
- 3700 C.3.1 Adversarial Events
- [M][D] Marconi Wireless Hack.⁹ In 1903, Italian radio pioneer Guglielmo Marconi was preparing for his first public demonstration of long-distance secure wireless communications from Cornwall to Professor Fleming at the Royal Institution of London. Inventor and magician, Nevil Maskelyne, hacked the system, sending a comical message in morse code referencing "rats." Maskelyne then published an explanation of his hack to the trade journal *The Electrician*.
- [M][I] Worcester Air Traffic Communications.¹⁰ In March 1997, a teenager in Worcester, Massachusetts disabled part of the public switched telephone network using a dial-up modem connected to the system. This knocked out phone service at the control tower, airport security, the airport fire department, the weather service, and carriers that use the airport. Also, the tower's main radio transmitter and another transmitter that activates runway lights were shut down, as well as a printer that controllers use to monitor flight progress. The attack also knocked out phone service to 600 homes and businesses in the nearby town of Rutland.
- [M][D] Maroochy Shire Sewage Spill.¹¹ In the spring of 2000, a former employee of an Australian organization that develops manufacturing software applied for a job with the local government but was rejected. Over a two-month period, the disgruntled rejected employee reportedly used a radio transmitter on as many as 46 occasions to remotely break into the controls of a sewage treatment system. He altered electronic data for particular sewerage pumping stations and caused malfunctions in their operations, ultimately releasing about 264,000 gallons of raw sewage into nearby rivers and parks.

Additional information on the Marconi Wireless Hack incident can be found at: <u>https://www.osti.gov/biblio/1505628</u>.
 Additional information on the Worcester Air Traffic Communications incident can be found at:

http://www.cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html Additional information on the Maroochy Shire Sewage Spill incident can be found at http://www.theregister.co.uk/2001/10/31/hacker_jailed_for_revenge_sewage/.

- [M][I] Night Dragon.¹² McAfee reported a series of attacks designed to steal sensitive data from the global oil, energy, and petrochemical industries. Adversaries exfiltrated proprietary operations data and project financing information with regard to oil and gas field bids and operations.
- [M][D] Iranian Centrifuge, Stuxnet.¹³ Stuxnet was a Microsoft Windows computer worm discovered in July 2010 that specifically targeted industrial software and equipment. The worm initially spread indiscriminately, but included a highly specialized malware payload that was designed to only target particular SCADA systems that were configured to control and monitor specific industrial processes.
- 3730 [M][D] German Steel Mill Attack.¹⁴ In 2014, hackers manipulated and disrupted control
 3731 systems to such a degree that a blast furnace could not be properly shut down, resulting in
 3732 "massive"—though unspecified—damage.
- [M][I] Shamoon.¹⁵ In 2012 Saudi Aramco experienced a malware attack that targeted their refineries and overwrote the attacked systems' Master Boot Records (MBRs), partition tables, and other data files. This caused the systems to become unusable.
- [M][D] New York Dam.¹⁶ In 2013, an Iranian computer security company obtained remote access to a computer which controlled the SCADA system for the Bowman Dam located in Rye, New York. The adversary was able to view water levels, temperature, and status of the sluice gate. The sluice gate control was disconnected for maintenance at the time of adversarial remote access, so the dam could not be remotely controlled.
- [M][D] Dragonfly Campaign, Havex.¹⁷ The energy sector was targeted during a multi-year cyber-espionage campaign using primarily Havex malware. Havex is a remote access trojan that uses the Open Platform Communications (OPC) standard to gather information about connected ICS devices on a network. The campaigns were exploratory.
- [M][D] Ukrainian Power Grid, BlackEnergy3.¹⁸ On December 23, 2015, Ukrainian power companies experienced a cyberattack causing power outages which impacted over 225,000 customers in Ukraine. Over 50 regional substations experienced malicious remote operation of their breakers. KillDisk malware was used to erase files on target systems, including at least one Windows-based HMI. The actors also corrupted the firmware of Serial-to-Ethernet devices at the substations. This was the first-known cyber attack on a power grid.

¹² Additional information on Night Dragon was published as a McAfee white paper at: <u>https://www.heartland.org/_template-assets/documents/publications/29423.pdf</u>.

¹³ Additional information on the Stuxnet worm can be found at: <u>https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/</u>.

¹⁴ Additional information on the German steel mill incident can be found at: <u>http://www.wired.com/2015/01/german-steel-mill-hack-destruction/</u>.

¹⁵ Additional information on Shamoon can be found at <u>https://www.cisa.gov/uscert/ics/monitors/ICS-MM201209</u>.

¹⁶ The US Department of Justice indictment for the New York Dam attacks can be found at: <u>https://www.justice.gov/opa/file/834996/download</u>.

Additional information on the Dragonfly / Energetic Bear Campaign can be found at: <u>https://www.osti.gov/servlets/purl/1505628</u>.

¹⁸ Additional information about the first Ukrainian Power Grid attack can be found at: <u>https://info.publicintelligence.net/NCCIC-UkrainianPowerAttack.pdf</u>.

- [M][D] Ukrainian Power Grid, Industroyer.¹⁹ On December 17, 2016, a cyber attack occurred at a substation outside of Kiev. The impact was an outage for customers of one substation for approximately one hour. This attack is the first-known malware specifically designed to attack the power grid.
- [M][I] Maersk, NotPetya. In 2017, the NotPetya malware encrypted computers globally
 with no method for decryption. Although the malware initially targeted Ukrainian
 companies, it spread throughout the world with significant impact to Maersk, FedEx, Merck,
 and Saint-Gobain. Malware destroyed data and disrupted shipping operations for Maersk,
 costing the company over \$300 million on repair and recovery.
- [M][D] Saudi Petrochem, TRITON.²⁰ A petrochemical facility in Saudi Arabia was attacked using malicious software targeted at the industrial SIS. The SIS initiated a safe shutdown of the petrochemical process in 2017 when the triple-redundant processors identified mismatched code amongst the processors.
- [M][I] Norsk Hydro, LockerGoga.²¹ In March 2019, Norsk Hydro experienced a cyberattack which used LockerGoga ransomware to encrypt its computer files. The aluminum and renewable energy company transitioned to manual operations and was transparent with the public on its progress to recovery. Norsk Hydro's transparency throughout the discovery and recovery process is well regarded by the security industry.
- [M][D] Honda, EKANS. EKANS is ransomware that impacted operations at Honda automotive US production facilities in June 2020. EKANS has a hard-coded kill-list of processes, including some associated with common ICS software platforms (e.g., GE Proficy historian, Honeywell HMIWeb).
- [M][D] Oldsmar Water Treatment Facility.²² In February 2021, hackers gained access to the City of Oldsmar's water treatment control system using TeamViewer, which was accessible via the internet. Dosing set points were modified, which temporarily increased the amount of sodium hydroxide (NaOH) being added to the water. The water treatment operator observed the hacker moving the mouse on the operating screen and was able to restore normal operations.
- [M][I] Colonial Pipeline.²³ In May 2021, over 5500 miles of pipeline transporting more than 100 million gallons per day of refined products to the east coast of the U.S. shutdown operations because of a ransomware attack. Colonial Pipeline was a victim of a ransomware cyber attack which encrypted their IT systems by exploiting a legacy VPN profile. The

¹⁹ Additional information on Industroyer malware can be found at: <u>https://us-cert.cisa.gov/ncas/alerts/TA17-163A</u>.

²⁰ Additional information on the TRITON attack can be found at: <u>https://www.mandiant.com/resources/triton-actor-ttp-profile-custom-attack-tools-detections</u>.

Additional information on Norsk Hydro attack can be found at: <u>https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/</u> and <u>https://doublepulsar.com/how-lockergoga-took-down-hydro-ransomware-used-in-targeted-attacks-aimed-at-big-business-c666551f5880</u> and <u>https://www.darkreading.com/application-security/ransomware/norsk-hydro-this-is-how-you-react-to-a-ransomware-breach/a/d-id/750396</u>.

²² Additional information on the Oldsmar Water Treatment event can be found at: <u>https://www.dragos.com/blog/industry,-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/</u>.

²³ Additional information on the Colonial Pipeline incident can be found in: <u>https://www.c-span.org/video/?512247-1/senate-homeland-security-hearing-colonial-pipeline-cyber-attack</u> "Senate Homeland Security Hearing on Colonial Pipeline Cyber Attack" Video. <u>https://www.hsgac.senate.gov/imo/media/doc/Testimony-Blount-2021-06-08.pdf</u> Transcript.

investigation is ongoing, but at the time of this writing, there is no evidence that the
ransomware had any direct impact on the OT environment; Colonial made the decision to
shut down the entire OT network to contain any potential damage. Colonial Pipeline also
decided to pay the ransom to cybercriminal group Darkside in order to have all possible
tools, including the decryption tools, available to bring the pipeline system back online. The
U.S. government was able to recover some of the ransom payment.²⁴

[M][I] Ransomware Targeting Healthcare.²⁵ A string of malware delivered via phishing attacks targeted the healthcare and public health sectors. The malware was used by adversaries to conduct ransomware attacks, disrupt services, and steal data. In fall 2020, CISA Alert (AA20-302A) was issued to warn healthcare and public health sector companies of the prevalence of these attacks.

3794 C.3.2 Structural Events

- [N][D] Bellingham, Washington Gasoline Pipeline Failure.²⁶ In June 1999, 900.000 liters 3795 (237,000 gallons) of gasoline leaked from a 40.64 cm (16 inch) pipeline and ignited 1.5 hours 3796 3797 later, causing three deaths, eight injuries, and extensive property damage. The pipeline failure 3798 was exacerbated by control systems not able to perform control and monitoring functions. 3799 "Immediately prior to and during the incident, the SCADA system exhibited poor 3800 performance that inhibited the pipeline controllers from seeing and reacting to the 3801 development of an abnormal pipeline operation." A key recommendation from the NTSB 3802 report issued October 2002 was to utilize an off-line development and testing system for 3803 implementing and testing changes to the SCADA database.
- [M][I] CSX Train Signaling System.²⁷ In August 2003, the Sobig computer virus was 3804 blamed for shutting down train signaling systems throughout the east coast of the U.S. The 3805 3806 virus infected the computer system at CSX Corp.'s Jacksonville, Florida headquarters, 3807 shutting down signaling, dispatching, and other systems. According to Amtrak spokesman 3808 Dan Stessel, ten Amtrak trains were affected in the morning. Trains between Pittsburgh and 3809 Florence, South Carolina were halted because of dark signals, and one regional Amtrak train 3810 from Richmond, Virginia to Washington and New York was delayed for more than two hours. Long-distance trains were also delayed between four and six hours. 3811
- [N][D] Browns Ferry-3 PLC Failure.²⁸ In August 2006, TVA was forced to manually shut down one of their plant's two reactors after unresponsive PLCs problems caused two water pumps to fail and threatened the stability of the plant itself. Although there were dual redundant PLCs, they were connected to the same Ethernet network. Later testing on the

²⁴ Department of Justice Seizes \$2.3 Million in Cryptocurrency Paid to Ransomware Extortionists Darkside. 7 June 2021. <u>https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside</u>

²⁵ Additional information on the series of malware targeting Healthcare can be found at <u>Ransomware Activity Targeting the Healthcare and Public Health Sector | CISA</u>.

²⁶ Additional information on the Bellingham, Washington Gasoline Pipeline Failure incident can be found at <u>http://www.ntsb.gov/investigations/AccidentReports/PAR0202.pdf.</u>

Additional information on the CSX Train Signaling System incident can be found at: http://www.informationweek.com/story/showArticle.jhtml?articleID=13100807.

²⁸ Additional information on the Browns Ferry -3 PLC Failure incident can be found at: <u>http://www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/2007/in200715.pdf.</u>

failed devices discovered that they would crash when they encountered excessive networktraffic.

3818 C.3.3 Environmental Events

■ [N][I] Fukushima Daiichi Nuclear Disaster.²⁹ The Great East Japan Earthquake on March 3819 11, 2011 struck off the coast of Japan, sending a massive tsunami inland towards the nuclear 3820 3821 plant. The tsunami compromised the plant's seawall, flooding much of the plant, including 3822 the location housing the emergency generators. This emergency power was critical for 3823 operating the control rooms and providing coolant water for the reactors. The loss of coolant 3824 caused the reactor cores to overheat to the point where the fuel's zirconium cladding reacted 3825 with water, releasing hydrogen gas and fueling large explosions in three of the four reactor buildings. This resulted in large-scale radiation leakage that has impacted plant employees, 3826 nearby citizens, and the local environment. Post-event analysis found that the plant's 3827 3828 emergency response center had insufficient secure communication lines to provide other 3829 areas of the plant with information on key safety-related instrumentation.

3830 C.3.4 Accidental Events

[N][D] Vulnerability Scanner Incidents.³⁰ While a ping sweep was being performed on an active SCADA network that controlled 3-meter (9-foot) robotic arms, one arm became active and swung around 180 degrees. The controller for the arm was in standby mode before the ping sweep was initiated. In a separate incident, a ping sweep was being performed on an ICS network to identify all hosts that were attached to the network, for inventory purposes, and it caused a system controlling the creation of integrated circuits in the fabrication plant to hang. This test resulted in the destruction of \$50,000 worth of wafers.

[N][D] Penetration Testing Incident.³¹ A natural gas utility hired an IT security consulting organization to conduct penetration testing on its corporate IT network. The consulting organization carelessly ventured into a part of the network that was directly connected to the SCADA system. The penetration test locked up the SCADA system and the utility was not able to send gas through its pipelines for four hours. The outcome was the loss of service to its customer base for those four hours.

[N][I] NERC Enforcement Action.³² In 2019, a U.S. energy company was fined \$10 million by NERC for cybersecurity violations that took place between 2015 and 2018. The inability to comply with U.S. standards for cybersecurity was seen as a risk to the security and reliability of the overall power system.

²⁹ Additional information can be found at: <u>http://www-pub.iaea.org/MTCD/meetings/PDFplus/2011/cn200/documentation/cn200_Final-Fukushima-Mission_Report.pdf</u> and <u>http://pbadupws.nrc.gov/docs/ML1414/ML14140A185.pdf</u>.

³⁰ Additional information on the vulnerability scanner incidents can be found at: <u>https://energy.sandia.gov/wp-content/gallery/uploads/sand_2005_2846p.pdf</u>.

³¹ Additional information on penetration testing incidents can be found at: <u>https://energy.sandia.gov/wp-content/gallery/uploads/sand_2005_2846p.pdf</u>.

³² For additional information about fines imposed on energy companies, see <u>Enforcement Actions 2019 (nerc.com</u>).

[N][D] NASA Fire.³³ A security patch was applied to an OT component that controlled a large engineering oven. The patch and associated reboot caused the oven to stop running, which led to a fire that destroyed the spacecraft hardware. The reboot also impeded alarm activation, which allowed the fire to go undetected for 3.5 hours before discovery.

3852

³³ For additional information on accidental OT losses from applying IT security controls in NASA, see <u>Final Report - IG-17-</u> <u>011 (nasa.gov)</u>.

3853 Appendix D—OT Security Organizations, Research, and Activities

- This appendix contains abstracts of some of the many activities that are addressing OT cybersecurity. Please be aware that organization descriptions and related information provided in this appendix have been drawn primarily from the listed organizations' websites and from other
- reliable public sources but has not been verified. Readers are encouraged to contact the
- 3858 organizations directly for the most up-to-date and complete information.
- 3859D.1Consortiums and Standards

3860 D.1.1 Critical Infrastructure Partnership Advisory Council (CIPAC)

3861 The U.S. Department of Homeland Security established the Critical Infrastructure Partnership

3862 Advisory Council (CIPAC) to facilitate interaction between governmental entities and

3863 representatives from the community of critical infrastructure owners and operators. CIPAC is

3864 aligned with and supports the implementation of the National Infrastructure Protection Plan

3865 2013: Partnering for Critical Infrastructure Security and Resilience and Presidential Policy

3866 Directive 21, Critical Infrastructure Security and Resilience to provide a forum in which the

3867 government and private sector entities, organized as coordinating councils, can jointly engage in

3868 a broad spectrum of activities to support and collaborate critical infrastructure security and

- 3869 resilience efforts.
- 3870 <u>https://www.cisa.gov/critical-infrastructure-partnership-advisory-council</u>

3871 **D.1.2** Institute for Information Infrastructure Protection (I3P)

3872 The I3P is a consortium of leading national cybersecurity institutions, including academic

3873 research centers, government laboratories, and non-profit organizations. It was founded in

3874 September 2001 to help meet a well-documented need for improved research and development

3875 (R&D) to protect the nation's information infrastructure against catastrophic failures. The

3876 institute's main role is to coordinate a national cybersecurity R&D program and help build

3877 bridges between academia, industry, and government. The I3P continues to work toward

3878 identifying and addressing critical research problems in information infrastructure protection and

3879 opening information channels between researchers, policymakers, and infrastructure operators.

3880 <u>https://www.thei3p.org</u>

3881 D.1.3 International Electrotechnical Commission (IEC)

IEC is a standards organization that prepares and publishes international standards for all
electrical, electronic, and related technologies. These standards serve as a basis for creating
national standards and as references for drafting international tenders and contracts. IEC's

3885 members include manufacturers, providers, distributors, vendors, consumers, and users, all levels

3886 of governmental agencies, professional societies, trade associations, and standards developers

3887 from over 60 countries. Below you will find relevant IEC Technical Committees (TC) that

3888 contribute to the field of OT security.

3889 <u>https://www.iec.ch</u>

3890 D.1.3.1 IEC Technical Committee 57

3891 The scope of TC 57 is to prepare international standards for power systems control equipment

and systems including EMS (Energy Management Systems), SCADA (Supervisory Control and

3893 Data Acquisition), distribution automation, teleprotection, and associated information exchange

for real-time and non-real-time information, used in the planning, operation, and maintenance of power systems. The list of current working groups (WGs) within TC 57 is below.

- 3896
 https://www.iec.ch/dyn/www/f?p=103:7:3323052731869::::FSP_ORG_ID,FSP_LANG_ID:1273

 3897
 ,25
- 3898 WG 3: Telecontrol protocols
- 3899 WG 10: Power system IED communication and associated data models
- 3900 WG 13: Software interfaces for operation and planning of the electric grid
- 3901 WG 14: Enterprise business function interfaces for utility operations
- 3902 WG 15: Data and communication security
- 3903 WG 16: Deregulated energy market communications
- WG 17: Power system intelligent electronic device communication and associated data models for microgrids, distributed energy resources and distribution automation
- **3906 W**G 18: Hydroelectric power plants Communication for monitoring and control
- 3907 WG 19: Interoperability within TC 57 in the long term
- 3908 WG 20: Power Line Carrier Communication Systems
- 3909 WG 21: Interfaces and protocol profiles relevant to systems connected to the electrical grid
- 3910D.1.3.2IEC Technical Committee 65

3911 The scope of TC 65 is to prepare international standards for systems and elements used for

3912 industrial process measurement, control, and automation. To coordinate standardization activities

3913 which affect integration of components and functions into such systems including safety and

3914 security aspects. This work of standardization is to be carried out in the international fields for

3915 equipment and systems. The list of current working groups within TC 65 is included in the link 3916 below.

 3917
 https://www.iec.ch/dyn/www/f?p=103:7:3323052731869::::FSP_ORG_ID,FSP_LANG_ID:1250

 3918
 .25

3919 D.1.4 Institute of Electrical and Electronics Engineers, Inc. (IEEE)

3920 IEEE and its members inspire a global community to innovate for a better tomorrow through its3921 more than 400,000 members in more than 160 countries, and its highly cited publications,

- 3922 conferences, technology standards, and professional and educational activities. Below you will
- find relevant IEEE subsocieties that contribute to the field of OT security.
- 3924 <u>https://www.ieee.org/</u>

3925 D.1.4.1 IEEE Engineering in Medicine and Biology Society (EMBS)

3926 EMBS is the world's largest international society of biomedical engineers who design the

- develop the wireless technologies that allow patients and doctors to communicate over long
 distances.
- 3930 <u>https://www.embs.org/</u>

3931 D.1.4.2 IEEE Industrial Electronics Society (IES)

3932 IES members focus on the theory and application of electronics, controls, communications,

- instrumentation, and computational intelligence to industrial and manufacturing systems andprocesses.
- 3935 <u>http://www.ieee-ies.org/</u>

3936D.1.4.3IEEE Power & Energy Society (PES)

3937 IEEE PES is the world's largest forum for sharing the latest in technological developments in the
 a electric power industry, for developing standards that guide the development and construction of
 a equipment and systems, and for educating members of the industry and the general public.

3940 <u>https://www.ieee-pes.org/</u>

3941D.1.4.4IEEE Technical Committee on Power System Communications and
Cybersecurity (PSCCC)

- 3943 IEEE PSCCC Cybersecurity Subcommittee (SO) leads numerous working groups dedicated to
 3944 maintaining standards within the field of OT security. For more information regarding each
 3945 standard listed, please visit the link below.
- 3946 <u>https://site.ieee.org/pes-pscc/cybersecurity-subcommittee-s0/</u>
- 3947 IEEE Std 1686, Standard for Intelligent Electronic Devices Cyber Security Capabilities
- 3948 IEEE Std 1711.1, Standard for a Cryptographic Protocol for Cyber Security of Substation
 3949 Serial Links: Substation Serial Protection Protocol (SSPP)
- IEEE Std 2030.102.1-2020, Standard for Interoperability of Internet Protocol Security
 (IPsec) Utilized within Utility Control Systems
- 3952 IEEE Std 1711.2-2019, Standard for Secure SCADA Communications Protocol (SSCP)

- 3953 IEEE Std C37.240, Standard Cybersecurity Requirements for Power System Automation,
 3954 Protection and Control Systems
- IEEE Std 2808, Standard for Function Designations used in Electrical Power Systems for
 Cyber Services and Cybersecurity
- 3957 IEEE Std 2658, Guide for Cybersecurity Testing in Electric Power Systems
- 3958 IEEE Std 1547.3, Guide for Cybersecurity of DERs Interface with Electric Power Systems
- 3959 IEEE Std 1815-2012, Standard for Electric Power Systems Communications-Distributed
 3960 Network Protocol (DNP3)

3961 D.1.4.5 IEEE Robotics and Automation Society (RAS)

- RAS members foster the development and facilitate the exchange of scientific and technologicalknowledge in robotics and automation that benefits the profession and humanity.
- 3964 <u>https://www.ieee-ras.org/</u>

3965 D.1.4.6 IEEE Vehicular Technology Society (VTS)

- The Vehicular Technology Society (VTS) is composed of engineers, scientists, students, and technicians interested in advancing the theory and practice of electrical engineering as it applies to mobile communications, land transportation, railroad/mass transit, vehicular electrotechnology equipment and systems, and land/airborne/maritime mobile services.
- 3970 <u>https://vtsociety.org</u>

3971 D.1.5 International Society of Automation (ISA)

The International Society of Automation (ISA) is a non-profit professional association founded in 1945 to create a better world through automation. ISA advances technical competence by connecting the automation community to achieve operational excellence and is the trusted provider of standards-based foundational technical resources, driving the advancement of individual careers and the overall profession. ISA develops widely used global standards; certifies professionals; provides education and training; publishes books and technical articles; hosts conferences and exhibits; and provides networking and career development programs for

- 3978 nosts conferences and exhibits; and provides networking and career development programs 3979 its members and customers around the world.
- 39/9 its members and customers around the wor
- 3980 <u>https://www.isa.org</u>

3981 D.1.5.1 ISA95, Enterprise-Control System Integration

3982 The ISA95 standards development committee defines the interface between control functions

3983 and other enterprise functions based upon the Purdue Reference Model for Computer Integrated

3984 Manufacturing (CIM). The ISA95 standard grew from the Purdue Enterprise Reference

3985 Architecture (PERA), first published by ISA in 1992. Since then, it has served as a common

- reference for defining the interfaces between the enterprise and control networks across all OT sectors. The most up-to-date standards published by ISA95 can be found below:
- 3988 https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

3989 D.1.5.2 ISA99, Industrial Automation and Control Systems Security

The ISA99 standards development committee brings together industrial cybersecurity experts
from across the globe to develop ISA standards on industrial automation and control systems
security. This original and ongoing ISA99 work is being utilized by the International
Electrotechnical Commission in producing the multi-standard ISA/IEC 62443 series. 62443
standards and technical reports are currently organized into four general categories called
General, Policies and Procedures, System, and Component. The current state of the 62443 series
can be found by following the link below.

- 3997 https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa99
- 3998 General
- ISA-62443-1-1, Concepts and models ■
- 4000 ISA-62443-1-2, Master glossary of terms and abbreviations
- 4001 ISA-62443-1-3, Security system conformance metrics
- 4002 ISA-62443-1-4, IACS security lifecycle and use cases
- 4003 Policies and Procedures
- 4004 ISA-62443-2-1, Security program requirements for IACS asset owners
- 4005 ISA-62443-2-2, IACS Security Protection Ratings (Draft)
- 4006 ISA-62443-2-3, Patch management in the IACS environment
- 4007 ISA-62443-2-4, Security Program requirements for IACS service providers
- 4008 ISA-62443-2-5, Implementation guidance for IACS asset owners
- 4009 System
- 4010 ISA-62443-3-1, Security technologies for IACS
- 4011 ISA-62443-3-2, Security risk assessment for system design
- 4012 ISA-62443-3-3, System security requirements and security levels
- 4013 Component
- 4014 ISA-62443-4-1, Product security development life cycle requirements
- 4015 ISA-62443-4-2, Technical security requirements for IACS components

4016 D.1.5.3 ISA-TR84.00.09, Cybersecurity Related to the Functional Safety Lifecycle

- 4017 This document is intended to address and provide guidance on integrating the cybersecurity
- 4018 lifecycle with the safety lifecycle as they relate to Safety Controls, Alarms, and Interlocks
- 4019 (SCAI), inclusive of Safety Instrumented Systems (SIS). This scope includes the work processes
- 4020 and countermeasures used to reduce the risk involved due to cybersecurity threats to the
- 4021 Industrial Automation and Control System (IACS) network.
- 4022 <u>https://www.isa.org/products/isa-tr84-00-09-2017-cybersecurity-related-to-the-f</u>

4023 **D.1.6** International Organization for Standardization (ISO)

- 4024 ISO is an independent, non-governmental international organization with a membership of 165
- 4025 national standards bodies. Through its members, it brings together experts to share knowledge

4026 and develop voluntary, consensus-based, market relevant International Standards that support

- 4027 innovation and provide solutions to global challenges. While the 27001/27002 standards are
- 4028 defined for IT systems and environments, they still have many applications to OT security. The
- 4029 most recent versions of each standard were released in 2013.
- 4030 <u>https://www.iso.org</u>

4031 **D.1.6.1 ISO 27001**

4032 ISO/IEC 27001 specifies the requirements for establishing, implementing, maintaining, and

4033 continually improving an information security management system within the context of the

- 4034 organization. It also includes requirements for the assessment and treatment of information
- 4035 security risks tailored to the needs of the organization. The requirements set out in ISO/IEC
- 4036 27001 are generic and are intended to be applicable to all organizations, regardless of type, size,
- 4037 or nature.
- 4038 <u>https://www.iso.org/standard/54534.html</u>

4039 **D.1.6.2 ISO 27002:2022**

4040 ISO/IEC 27002:2022 gives guidelines for organizational information security standards and

- 4041 information security management practices including the selection, implementation, and
- 4042 management of controls taking into consideration the organization's information security risk
- 4043 environment(s).
- 4044 <u>https://www.iso.org/standard/75652.html</u>

4045 D.1.7 National Council of Information Sharing and Analysis Centers (ISACs)

4046 Formed in 2003, the NCI today comprises 25 organizations. It is a coordinating body designed to

4047 maximize information flow across the private sector critical infrastructures and with government.

4048 Information Sharing and Analysis Centers help critical infrastructure owners and operators

- 4049 protect their facilities, personnel, and customers from cyber and physical security threats and
- 4050 other hazards. ISACs collect, analyze, and disseminate actionable threat information to their

- 4051 members and provide members with tools to mitigate risks and enhance resiliency. ISACs reach
- 4052 deep into their sectors, communicating critical information far and wide and maintaining sector-
- 4053 wide situational awareness. For a list of current member ISACs from various critical
- 4054 infrastructure sectors visit the link below.
- 4055 <u>https://www.nationalisacs.org/member-isacs-3</u>

4056 D.1.8 National Institute of Standards and Technology (NIST)

4057 The mission of NIST is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and 4058 4059 improve our quality of life. From the smart electric power grid and electronic health records to 4060 atomic clocks, advanced nanomaterials, and computer chips, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute 4061 4062 of Standards and Technology. NIST develops and maintains an extensive collection of computer security standards, guidelines, recommendations, and research which are released through SPs 4063 4064 and other reporting mediums.

4065 <u>https://csrc.nist.gov/publications/</u>

4066 D.1.8.1 NIST SP 800 Series Cybersecurity Guidelines

4067 The NIST SP 800 series of documents on information technology reports on the NIST

4068 Information Technology Laboratory (ITL) research, guidance, and outreach efforts in computer

4069 security, and its collaborative activities with industry, government, and academic organizations.

4070 Focus areas include cryptographic technology and applications, advanced authentication, public

4071 key infrastructure, internetworking security, criteria and assurance, and security management and

4072 support. In addition to NIST SP 800-82, the following is an abbreviated listing of additional 800

series documents that have broad applicability to the OT security community. All 800 seriesdocuments are available through the URL listed below.

- 4075 <u>https://csrc.nist.gov/publications/sp800</u>
- 4076 INIST SP 800-30 Rev. 1, Guide for Conducting Risk Assessments
- 4077 INIST SP 800-37 Rev. 2, Risk Management Framework for Information Systems and Organizations: A System Life Cycle Approach for Security and Privacy
- 4079 NIST SP 800-40 Rev. 4, Guide to Enterprise Patch Management Planning: Preventive
 4080 Maintenance for Technology
- 4081
 NIST SP 800-50, Building an Information Technology Security Awareness and Training Program
- 4083 INIST SP 800-53 Rev. 5, Security and Privacy Controls for Information Systems and Organizations
- 4085 INIST SP 800-53A Rev. 5, Assessing Security and Privacy Controls in Information Systems and Organizations

- 4087 INIST SP 800-53B, Control Baselines for Information Systems and Organizations
- 4088 INIST SP 800-70 Rev. 4, National Checklist Program for IT Products: Guidelines for Checklist Users and Developers
- 4090 NIST SP 800-98, Guidelines for Securing Radio Frequency Identification (RFID) Systems
- 4091 NIST SP 800-116 Rev. 1, Guidelines for the Use of PIV Credentials in Facility Access
- 4092 NIST SP 800-123, Guide to General Server Security
- 4093 NIST SP 800-124 Rev. 1, Guidelines for Managing the Security of Mobile Devices in the Enterprise
- 4095 NIST SP 800-125, Guide to Security for Full Virtualization Technologies
- 4096 NIST SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal
 4097 Information Systems and Organizations
- 4098 NIST SP 800-137A, Assessing Information Security Continuous Monitoring (ISCM)
 4099 Programs: Developing an ISCM Program Assessment
- 4100 NIST SP 800-150, Guide to Cyber Threat Information Sharing
- NIST SP 800-160 Vol. 1, Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems
- NIST SP 800-160 Vol. 2 Rev. 1, Developing Cyber-Resilient Systems: A Systems Security
 Engineering Approach

4105 D.1.8.2 NIST SP 1800 Series Cybersecurity Practice Guides

4106 NIST SP 1800 series documents present practical, usable, cybersecurity solutions to the

- 4107 cybersecurity community. These solutions demonstrate how to apply standards-based approaches
- 4108 and best practices. An 1800 document can map capabilities to the Cybersecurity Framework and
- 4109 outline steps needed for another entity or organization to recreate an example solution. Each SP
- 4110 1800 series publication generally serves as a "how to" guide that demonstrates how to implement
- 4111 and apply standards-based cybersecurity technologies in the real world. The guides are designed
- 4112 to help organizations gain efficiencies in implementing cybersecurity technologies, while saving
- 4113 them research and proof of concept costs. The following is a listing of some 1800 series
- 4114 documents that have applicability to the OT security community. These as well as many others
- 4115 are available through the URL listed below.
- 4116 <u>https://csrc.nist.gov/publications/sp1800</u>
- 4117 INIST SP 1800-2, Identity and Access Management for Electric Utilities
- 4118 INIST SP 1800-7, Situational Awareness for Electric Utilities
- 4119 NIST SP 1800-8, Securing Wireless Infusion Pumps in Healthcare Delivery Organizations
- NIST SP 1800-10, Protecting Information and System Integrity in Industrial Control System
 Environments: Cybersecurity for the Manufacturing Sector

- NIST SP 1800-11, Data Integrity: Recovering from Ransomware and Other Destructive
 Events
- 4124 INIST SP 1800-23, Energy Sector Asset Management: For Electric Utilities, Oil & Gas
 4125 Industry
- 4126 INIST SP 1800-24, Securing Picture Archiving and Communication System (PACS):
 4127 Cybersecurity for the Healthcare Sector
- NIST SP 1800-25, Data Integrity: Identifying and Protecting Assets Against Ransomware
 and Other Destructive Events
- NIST SP 1800-26, Data Integrity: Detecting and Responding to Ransomware and Other
 Destructive Events
- 4132 NIST SP 1800-27, Securing Property Management Systems
- 4133 INIST SP 1800-30, Securing Telehealth Remote Patient Monitoring Ecosystem
- 4134 INIST SP 1800-32, Securing Distributed Energy Resources: An Example of Industrial Internet of Things
- 4136 **D.1.8.3 NIST Internal or Interagency Reports**
- 4137 NISTIR series documents are reports of research findings, including background information for
- 4138 FIPS and SPs. The following is a listing of some NISTIR series documents that have
- 4139 applicability to the OT security community. These as well as many others are available through
- 4140 the URL listed below.
- 4141 <u>https://csrc.nist.gov/publications/nistir</u>
- 4142 NISTIR 7628 Rev. 1, Guidelines for Smart Grid Cybersecurity
- 4143 INISTIR 8011 Vol. 1, Automation Support for Security Control Assessments: Volume 1: Overview
- 4145 INISTIR 8011 Vol. 2, Automation Support for Security Control Assessments: Volume 2: Hardware Asset Management
- 4147 INISTIR 8011 Vol. 3, Automation Support for Security Control Assessments: Software Asset 4148 Management
- 4149 NISTIR 8011 Vol. 4, Automation Support for Security Control Assessments: Software
 4150 Vulnerability Management
- 4151 INISTIR 8170, Approaches for Federal Agencies to Use the Cybersecurity Framework
- 4152 INISTIR 8183 Rev. 1, Cybersecurity Framework Version 1.1 Manufacturing Profile
- NISTIR 8183A Vol. 1, Cybersecurity Framework Manufacturing Profile Low Impact Level
 Example Implementations Guide: Volume 1 General Implementation Guidance
- NISTIR 8183A Vol. 2, Cybersecurity Framework Manufacturing Profile Low Impact Level
 Example Implementations Guide: Volume 2 Process-based Manufacturing System Use
 Case

- 4158 ■ NISTIR 8183A Vol. 3, *Cybersecurity Framework Manufacturing Profile Low Impact Level* 4159 Example Implementations Guide: Volume 3 – Discrete-based Manufacturing System Use 4160 Case
- 4161 ■ NISTIR 8212, ISCMA: An Information Security Continuous Monitoring Program Assessment
- NISTIR 8219, Securing Manufacturing Industrial Control Systems: Behavioral Anomaly 4162 4163 Detection

4164 D.1.9 North American Electric Reliability Corporation (NERC)

- 4165 NERC's mission is to improve the reliability and security of the bulk power system in North
- 4166 America. To achieve that, NERC develops and enforces reliability standards; monitors the bulk
- 4167 power system; assesses future adequacy; audits owners, operators, and users for preparedness;
- and educates and trains industry personnel. NERC is a self-regulatory organization that relies on 4168
- 4169 the diverse and collective expertise of industry participants. As the Electric Reliability
- Organization, NERC is subject to audit by the US Federal Energy Regulatory Commission and 4170
- 4171 governmental authorities in Canada.
- 4172 https://www.nerc.com

4173 **NERC Critical Infrastructure Protection (CIP) Standards**

- 4174 NERC has issued a set of cybersecurity standards to reduce the risk of compromise to electrical
- 4175 generation resources and high-voltage transmission systems above 100 kV, also referred to as
- 4176 bulk electric systems. Bulk electric systems include Balancing Authorities, Reliability
- 4177 Coordinators, Interchange Authorities, Transmission Providers, Transmission Owners,
- 4178 Transmission Operators, Generation Owners, Generation Operators, and Load Serving Entities.
- 4179 The cybersecurity standards include audit measures and levels of non-compliance that can be
- 4180 tied to penalties. NERC currently maintains 12 Critical Infrastructure Protection (CIP) standards
- 4181 subject to enforcement, with 2 additional standards which are filed and pending regulatory 4182 approval.
- 4183 https://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
- 4184 ■ CIP-002, Cyber Security - BES Cyber System Categorization
- 4185 ■ CIP-003, Cyber Security - Security Management Controls
- CIP-004, Cyber Security Personnel & Training 4186
- 4187 ■ CIP-005, Cyber Security - Electronic Security Perimeter(s)
- 4188 ■ CIP-006, Cyber Security - Physical Security of BES Cyber Systems
- 4189 ■ CIP-007, Cyber Security - System Security Management
- 4190 ■ CIP-008, Cyber Security - Incident Reporting and Response Planning
- 4191 ■ CIP-009, Cyber Security - Recovery Plans for BES Cyber Systems
- 4192 ■ CIP-010, Cyber Security - Configuration Change Management and Vulnerability 4193 Assessments

- 4194 CIP-011, Cyber Security Information Protection
- 4195 CIP-013, Cyber Security Supply Chain Risk Management
- 4196 CIP-014, Cyber Security Physical Security

4197 **D.1.10** Operational Technology Cybersecurity Coalition

- 4198 The Operational Technology Cybersecurity Coalition's mission is to promote open, vendor-
- 4199 neutral, interoperable, standards-based cybersecurity solutions for OT.
- 4200 https://www.otcybercoalition.org/
- 4201 **D.2 Research Initiatives and Programs**

4202 D.2.1 Clean Energy Cybersecurity Accelerator Initiative

4203 This initiative which is led by the U.S. Department of Energy (DOE) and the National

4204 Renewable Energy Laboratory (NREL), brings together federal infrastructure and expertise, asset

4205 owners in the energy sector, and technology innovators in a unified effort to catalyze the

4206 development of new cybersecurity solutions for the nation's future clean energy grid.

- 4207 The Cybersecurity Accelerator offers a world-class facility for asset owners of all sizes and types
- 4208 to work jointly to develop and deploy renewable, modern, and secure grid technologies that are
- 4209 cost competitive. The innovative technologies will also advance the state of the practice in
- 4210 demonstrating "security by design"—ensuring cybersecurity is built into renewable technologies
- 4211 and architectures at the start at the start of the design and development process, not bolted on
- 4212 after deployment.
- 4213 <u>https://www.energy.gov/ceser/department-energy-clean-energy-accelerator-initiative</u>

4214 D.2.2 Cybersecurity for Energy Delivery Systems (CEDS) R&D Program

- 4215 The Department of Energy (DOE) Cybersecurity, Energy Security, and Emergency Response
- 4216 (CESER) Office designed the CEDS R&D program starting in 2010 to assist energy sector asset
- 4217 owners by developing cybersecurity solutions for energy delivery systems through a focused
- 4218 research and development effort. Since then, DOE CESER has invested more than \$240 million
- 4219 with industry partners to make advances in cybersecurity capabilities for energy delivery
- 4220 systems. These research partnerships are helping to detect, prevent, and mitigate the
- 4221 consequences of a cyber-incident for current and future energy delivery systems.
- 4222 <u>https://www.energy.gov/ceser/activities/cybersecurity-critical-energy-</u>
 4223 infrastructure/cybersecurity-research-development-and

4224 D.2.3 Cybersecurity for the Operational Technology Environment (CyOTE)

4225 DOE CESER has partnered with Idaho National Laboratory and energy companies on a research

- 4226 initiative to enhance energy sector threat detection of anomalous behavior potentially indicating
- 4227 malicious cyber activity in OT networks.

4228 <u>https://inl.gov/cyote/</u>

4229 D.2.4 Cybersecurity Risk Information Sharing Program (CRISP)

4230 A public-private partnership, co-funded by DOE and industry and managed by the Electricity 4231 Information Sharing and Analysis Center (E-ISAC) at NERC. The purpose of CRISP is to 4232 collaborate with energy sector partners to facilitate the timely bi-directional sharing of unclassified and classified threat information and to develop situational awareness tools that 4233 4234 enhance the sector's ability to identify, prioritize, and coordinate the protection of critical 4235 infrastructure and key resources. CRISP leverages advanced sensors and threat analysis 4236 techniques developed by DOE along with DOE's expertise as part of the nation's Intelligence 4237 Community to better inform the energy sector of the high-level cyber risks. Pacific Northwest 4238 National Laboratory (PNNL) plays a lead role in CRISP, which uses advanced sensors and data 4239 analysis to identify new and ongoing cyber threats. This information is shared with voluntary

- 4240 utility participants that collectively deliver more than 80 percent of the nation's electricity.
- 4241 https://www.energy.gov/sites/default/files/2021-12/CRISP%20Fact%20Sheet 508.pdf

4242 D.2.5 Cyber Testing for Resilient Industrial Control Systems (CyTRICS)

4243 DOE CESER has partnered with Idaho National Laboratory and stakeholders to identify high

4244 priority OT components, perform expert testing, share information about vulnerabilities in the

4245 digital supply chain, and inform improvements in component design and manufacturing.

4246 <u>https://inl.gov/cytrics/</u>

4247 D.2.6 Homeland Security Information Network - Critical Infrastructure (HSIN-CI)

The Homeland Security Information Network (HSIN) is the trusted network for homeland
security mission operations to share Sensitive But Unclassified (SBU) information. The Critical

4250 Infrastructure community on HSIN (HSIN-CI) is the primary system through which private

- 4251 sector owners and operators, DHS, and other federal, state, and local government agencies
- 4252 collaborate to protect the nation's critical infrastructure. HSIN-CI provides real-time
- 4253 collaboration tools including a virtual meeting space, document sharing, alerts, and instant
- 4254 messaging at no charge.
- 4255 <u>https://www.dhs.gov/hsin-critical-infrastructure</u>

4256 D.2.7 INL Cyber-Informed Engineering (CIE) / Consequence-Driven CIE (CCE)

4257 The Department of Energy (DOE) and Idaho National Laboratory (INL) have developed a

4258 framework to guide the application of cybersecurity principles across the engineering design life

4259 cycle. The Cyber-Informed Engineering (CIE) framework and body of knowledge drives the

4260 inclusion of cybersecurity as a foundational element of risk management for engineering of

4261 functions aided by digital technology. Consequence-Driven Cyber-Informed Engineering (CCE)

4262 is a rigorous process for applying CIE's core principles to a specific organization, facility, or

4263 mission by identifying their most critical functions, methods and means an adversary would

likely use to manipulate or compromise them and determining the most effective means ofremoving or mitigating those risks.

4266 CIE emphasizes "engineering out" potential risk in key areas, as well as ensuring resiliency and

response maturity within the design of the engineered system. The following CIE frameworkshows some of the key focus areas and how the relate to the CCE Methodology. CCE walks an

- 4269 organization through core components of CIE in CCE's 4-phase process to evaluate and remove
- 4270 or mitigate weaknesses in their critical functions.
- 4271 https://inl.gov/cie/

4272 D.2.8 LOGIIC - Linking the Oil and Gas Industry to Improve Cybersecurity

4273 The LOGIIC (Linking the Oil and Gas Industry to Improve Cybersecurity) program is a

4274 collaboration of oil and natural gas companies and the U.S. Department of Homeland Security,

4275 Science and Technology Directorate. LOGIIC undertakes collaborative research and

4276 development projects to improve the level of cybersecurity in critical systems of interest to the

4277 oil and natural gas sector. The objective is to promote the cybersecurity of the sector while

4278 maintaining impartiality, the independence of the participants, and vendor neutrality.

- 4279 The Automation Federation serves as the LOGIIC host organization and has entered into
- 4280 agreements with the LOGIIC member companies and all other LOGIIC project participants. The
- 4281 US Department of Homeland Security Science and Technology Directorate previously
- 4282 contracted with scientific research organization SRI International to provide scientific and
- 4283 technical guidance for LOGIIC.
- 4284 <u>https://www.logiic.org/</u>

4285 **D.2.9 NIST Cyber Physical Systems and Internet of Things Program**

4286 The definitions of cyber-physical systems (CPS) and the Internet of Things (IoT) are converging

4287 over time to include a common emphasis on hybrid systems of interacting digital, analog,

- 4288 physical, and human components in systems engineered for function through integrated physics
- 4289 and logic. CPS and IoT enable innovative applications in important economic sectors such as
- 4290 smart cities, energy, manufacturing, transportation, and emergency response. The CPS/IoT
- 4291 Program develops and demonstrates new measurement science and promotes the emergence of
- 4292 consensus standards and protocols for advanced cyber-physical systems and IoT that are
- scalable, effective, measurable, interoperable, trustworthy, and assured. The Engineering
 Laboratory (Smart Grid and Cyber-Physical Systems Program Office) also provides leadership t
- 4294 Laboratory (Smart Grid and Cyber-Physical Systems Program Office) also provides leadership to 4295 support NIST-wide CPS/IoT program coordination with the Information Technology,
- 4296 Communications Technology, and Physical Measurement Laboratories.
- 4297 <u>https://www.nist.gov/programs-projects/cyber-physical-systems-and-internet-things-program</u>

4298 D.2.10 NIST Cybersecurity for Smart Grid Systems Project

4299 Smart grid cybersecurity must address both inadvertent compromises of the electric

- 4300 infrastructure, due to user errors, equipment failures, and natural disasters, and deliberate attacks,
- 4301 such as from disgruntled employees, industrial espionage, and terrorists. NIST will address these
- 4302 challenges through research conducted in the NIST Smart Grid Testbed facility and leadership
- 4303 within the Smart Electric Power Alliance (SEPA) Cybersecurity Committee (SGCC) to evaluate
- 4304 of cybersecurity policies and measures in industry standards, and development of relevant
 4305 guidance documents for the smart grid cybersecurity community. The primary goal is to develop
- 4306 a cybersecurity risk management strategy for the smart grid to enable secure interoperability of
- 4307 solutions across different domains and components. The Cybersecurity for Smart Grid Systems
- 4308 Project is moving forward to address the critical cybersecurity needs by promoting technology
- 4309 transfer of best practices, standards and voluntary guidance, and research in the areas of applied
- 4310 cryptography and cybersecurity for microgrids. This project will provide foundational
- 4311 cybersecurity guidance, cybersecurity reviews and recommendations for standards and
- 4312 requirements, outreach, and foster collaborations in the cross-cutting issue of cybersecurity in the
- 4313 smart grid.
- 4314 <u>https://www.nist.gov/programs-projects/cybersecurity-smart-grid-systems</u>

4315 D.2.11 NIST Cybersecurity for Smart Manufacturing Systems Project

- 4316 The Cybersecurity for Smart Manufacturing Systems project develops cybersecurity
- 4317 implementation methods, metrics and tools to enable manufacturers to implement cybersecurity
- 4318 capabilities in smart manufacturing systems while addressing the demanding performance,
- 4319 reliability, and safety requirements of these systems.
- 4320 <u>https://www.nist.gov/programs-projects/cybersecurity-smart-manufacturing-systems</u>

4321 D.2.12 NIST Reliable, High Performance Wireless Systems for Factory Automation

- 4322 The Reliable, High Performance Wireless Systems for Factory Automation project develops
- 4323 robust requirements, system models, recommended architectures, and guidelines for the
- 4324 integration of trustworthy wireless systems within a factory workcell where wireless is the
- 4325 primary mode of communication enabling robot mobility and ease of installation of edge
- 4326 devices.
- 4327 <u>https://www.nist.gov/programs-projects/reliable-high-performance-wireless-systems-factory-</u>
 4328 <u>automation</u>

4329
4330D.2.13NIST Prognostics and Health Management for Reliable Operations in Smart
Manufacturing (PHM4SM)

- 4331 The NIST Prognostics and Health Management for Reliable Operations in Smart Manufacturing
- 4332 (PHM4SM) project develop and deploys measurement science to promote the implementation,
- 4333 verification, and validation of advanced monitoring, diagnostic, and prognostic technologies to
- 4334 increase reliability and decrease downtime in smart manufacturing systems.

4335 https://www.nist.gov/programs-projects/prognostics-and-health-management-reliable-operations-4336 smart-manufacturing-phm4sm

4337 D.2.14 NIST Supply Chain Traceability for Agri-Food Manufacturing

- 4338 The NIST Supply Chain Traceability for Agri-Food Manufacturing project develops and deploys
- 4339 new standards, tools, and guidelines for traceability and cybersecurity that increase trust among
- participants and customers of agri-food manufacturing supply chains. 4340
- 4341 https://www.nist.gov/programs-projects/supply-chain-traceability-agri-food-manufacturing

4342 **D.3 Tools and Training**

4343 D.3.1 CISA Cyber Security Evaluation Tool (CSET®)

4344 The Cyber Security Evaluation Tool (CSET®) provides a systematic, disciplined, and repeatable approach for evaluating an organization's security posture. CSET is a desktop software tool that 4345

4346 guides asset owners and operators through a step-by-step process to evaluate ICS and IT network

4347 security practices. Users can evaluate their own cybersecurity stance using many recognized

- 4348 government and industry standards and recommendations.
- 4349 https://github.com/cisagov/cset/releases

4350 D.3.2 **CISA Cybersecurity Framework Guidance**

- 4351 Sector-specific guidance has been completed by all six critical infrastructure sectors for which
- 4352 the Department of Homeland Security, Office of Infrastructure Protection is the Sector-Specific

4353 Agency (SSA): Chemical, Commercial Facilities, Critical Manufacturing, Dams, Emergency

4354 Services, and Nuclear. Guidance is developed in close collaboration with the SSA, alongside the

4355 Sector Coordinating Councils (SCC) and Government Coordinating Councils (GCC), to provide

a holistic view of a sector's cybersecurity risk environment. 4356

4357 https://us-cert.cisa.gov/resources/cybersecurity-framework

4358 D.3.3 **CISA ICS Alerts, Advisories and Reports**

- 4359 CISA Alert is intended to provide timely notification to critical infrastructure owners and
- 4360 operators concerning threats or activity with the potential to impact critical infrastructure 4361
- computing networks.
- 4362 https://www.cisa.gov/uscert/ics/alerts
- Advisories provide timely information about current security issues, vulnerabilities, and exploits. 4363
- 4364 https://www.cisa.gov/uscert/ics/advisories
- 4365 ICS-related Technical Information Papers (TIPs), Annual Reports (Year in Review), and 3rd-
- 4366 party products that CISA considers of interest to persons engaged in protecting ICS:

4367 <u>https://www.cisa.gov/uscert/ics/Other-Reports</u>

4368 **D.3.4 CISA ICS Training Courses**

4369 CISA offers both self-paced virtual online training courses via a virtual learning portal as well as

- instructor-led classes provided at various venues. All CISA training courses are presented withno tuition cost to the attendee.
- 4372 <u>https://www.cisa.gov/uscert/ics/Training-Available-Through-CISA</u>

4373 D.3.5 MITRE ATT&CK for ICS

4374 MITRE ATT&CK for ICS is a curated knowledge base for cyber adversary behavior in the ICS

4375 technology domain. It reflects the various phases of an adversary's attack life cycle and the

4376 assets and systems they are known to target. ATT&CK for ICS originated from MITRE internal

4377 research focused on applying the ATT&CK methodology to the ICS technology domain.

4378 <u>https://collaborate.mitre.org/attackics/index.php/Main_Page</u>

4379 **D.3.6 NIST Cybersecurity Framework**

4380 Recognizing that the national and economic security of the United States depends on the reliable

4381 functioning of critical infrastructure, the President issued Executive Order 13636, Improving

4382 Critical Infrastructure Cybersecurity, in February 2013 [EO13636]. It directed NIST to work

4383 with stakeholders to develop a voluntary framework—based on existing standards, guidelines,

4384 and practices—for reducing cyber risks to critical infrastructure.

4385 NIST released the first version of the Framework for Improving Critical Infrastructure

4386 Cybersecurity on February 12, 2014. The Framework, created through collaboration between

4387 industry and government, consists of standards, guidelines, and practices to promote the

4388 protection of critical infrastructure. The prioritized, flexible, repeatable, and cost-effective

- 4389 approach of the Framework helps owners and operators of critical infrastructure to manage
- 4390 cybersecurity-related risk.
- 4391 In April of 2018, NIST published Version 1.1 of the Framework for Improving Critical
- 4392 Infrastructure Cybersecurity. Edits were driven by dialog with over 1,200 participants at the
- 4393 2016 and 2017 annual framework workshops in addition to over 200 written comments regarding
- 4394 draft publications. Both versions can be found at the link below.
- 4395 <u>https://www.nist.gov/cyberframework/framework</u>

4396 **D.3.7 SANS ICS Security Courses**

4397 SANS offers several courses that provide hands-on training focused on the cybersecurity of OT

4398 environments. These courses equip both security professionals and control system engineers with

4399 the knowledge and skills they need to safeguard critical infrastructure. Current course offerings

4400 and their corresponding certification are listed below.
- 4401 <u>https://www.sans.org/industrial-control-systems-security/</u>
- ICS410: ICS/SCADA Security Essentials, Global Industrial Cyber Security Professional
 (GICSP)
- 4404 ICS456: Essentials for NERC CIP, GIAC Critical Infrastructure Protection (GCIP)
- ICS515: ICS Visibility Detection, and Response, GIAC Response and Industrial Defense
 (GRID)
- 4407 D.4 Sector-Specific Resources

4408 **D.4.1 Chemical**

- Chemical Facility Anti-Terrorism Standards (CFATS) <u>https://www.cisa.gov/chemical-facility-</u>
 anti-terrorism-standards
- 4411 ChemLock https://www.cisa.gov/chemlock
- 4412 American Chemistry Council (ACC) <u>https://www.americanchemistry.com</u>
- 4413 American Petroleum Institute (API) <u>https://www.api.org</u>
- 4414 American Gas Association (AGA) <u>https://www.aga.org</u>
- 4415 American Fuel and Petrochemical Manufacturers (AFPM) https://www.afpm.org
- 4416 Society of Chemical Manufacturers and Affiliates (SOCMA) <u>https://www.socma.org</u>
- 4417 **D.4.2** Communications
- 4418 Federal Communications Commission (FCC) <u>https://www.fcc.gov</u>
- 4419 > Cybersecurity and Communications Reliability Division
- 4420 > Communications Security, Reliability, and Interoperability Council (CSRIC)
- 4421 **D.4.3 Critical Manufacturing**
- 4422 National Association of Manufacturers (NAM) <u>https://www.nam.org</u>
- 4423 > NAM Cyber Cover
- 4424 Association for Advancing Automation (A3) <u>https://www.automate.org</u>
- 4425 Measurement, Control, & Automation Association (MCAA) <u>https://www.themcaa.org</u>
- International Association for Automation and Robotics in Construction (IAARC) <u>https://www.iaarc.org</u>

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

- 4428 ODVA https://www.odva.org
- 4429 **D.4.4 Dams**
- 4430 Association of State Dam Safety Officials (ASDSO) <u>http://www.damsafety.org</u>
- 4431 **D.4.5 Energy**
- 4432 US Department of Energy (DOE) <u>https://www.energy.gov</u>
- 4433 > The Office of Cybersecurity, Energy Security, and Emergency Response (CESER)
- 4434 International council on Large Electric Systems (CIGRE) <u>https://www.cigre.org</u>
- 4435 American Public Power Association (APPA) <u>https://www.publicpower.org</u>
- 4436 > Cybersecurity Defense Community (CDC)
- 4437 Electric Power Research Institute (EPRI) <u>https://www.epri.com</u>
- 4438 > National Electric Sector Cybersecurity Resource (NESCOR)
- 4439 **D.4.6 Food and Agriculture**
- 4440 US Department of Agriculture (USDA) <u>https://www.usda.gov</u>
- 4441 US Food and Drug Administration (FDA) <u>https://www.fda.gov</u>
- 4442 National Farmers Union (NFU) <u>https://www.nfu.org</u>
- 4443 > Farm Crisis Center
- 4444 **D.4.7 Healthcare and Public Health**
- 4445 US Food and Drug Administration (FDA) <u>https://www.fda.gov</u>
- 4446 > Digital Health Center of Excellence
- 4447 Department of Health and Human Services (HHS) https://www.hhs.gov
- 4448 > Health Sector Cybersecurity Coordination Center (HC3)
- 4449 American Hospital Association (AHA) <u>https://www.aha.org/</u>
- 4450 > AHA Preferred Cybersecurity Provider (APCP) Program
- 4451 National Institutes of Health (NIH) <u>https://www.nih.gov</u>
- 4452 > NIH Information Technology Acquisition and Assessment Center (NITAAC)

- 4453 American Medical Association (AMA) https://www.ama-assn.org
- 4454 **D.4.8** Nuclear Reactors, Materials, and Waste
- 4455 US Nuclear Regulatory Commission (NRC) <u>https://www.nrc.gov</u>
- 4456 > Office of Nuclear Security and Incident Response Cyber Security Branch (CSB)
- 4457 International Atomic Energy Agency (IAEA) <u>https://www.iaea.org</u>
- 4458 Nuclear Energy Agency (NEA) <u>https://www.oecd-nea.org</u>
- 4459 > Digital Instrumentation and Control Working Group (DICWG)
- 4460 Nuclear Energy Institute (NEI) <u>https://www.nei.org</u>
- 4461 World Institute of Nuclear Security (WINS) <u>https://www.wins.org</u>
- 4462 **D.4.9 Transportation Systems**
- 4463 US Department of Transportation (DOT) <u>https://www.transportation.gov</u>
- 4464 > Intelligent Transportation Systems Joint Program Office
- 4465 Federal Aviation Administration (FAA) <u>https://www.faa.gov</u>
- 4466 > Aviation Cyber Initiative (ACI)
- 4467 > Air Traffic Organization (ATO) Cybersecurity Group
- 4468 Federal Highway Administration (FHWA) <u>https://highways.dot.gov</u>
- 4469 > FHWA Office of Operations Research, Development, and Technology
- 4470 Federal Motor Carrier Safety Administration (FMCSA) <u>https://www.fmcsa.dot.gov</u>
- 4471 Federal Railroad Administration (FRA) <u>https://railroads.dot.gov</u>
- 4472 > FRA Office of Research, Development, and Technology
- 4473 Federal Transit Administration (FTA) <u>https://www.transit.dot.gov</u>
- 4474 Maritime Administration (MARAD) <u>https://www.maritime.dot.gov</u>
- 4475 > Office of Maritime Security
- 4476 Pipeline and Hazardous Materials Safety Administration (PHMSA) <u>https://www.phmsa.dot.gov</u>
- 4477 National Highway Traffic Safety Administration (NHTSA) https://www.nhtsa.gov

- 4478 Transportation Security Administration (TSA) <u>https://www.tsa.gov/for-industry</u>
- 4479 > Surface Transportation Cybersecurity Resource Toolkit
- 4480 Association of American Railroads <u>https://www.aar.org</u>
- 4481 **D.4.10 Water and Wastewater**
- 4482 US Environmental Protection Agency (EPA) <u>https://www.epa.gov</u>
- 4483 > Drinking Water and Wastewater Resilience
- 4484 American Water Works Association (AWWA) <u>https://www.awwa.org</u>
- 4485 > AWWA Cybersecurity Tool
- 4486 Association of Metropolitan Water Agencies (AMWA) <u>https://www.amwa.net</u>
- 4487 National Association of Water Companies (NAWC) https://www.nawc.org
- 4488D.5Conferences and Working Groups

4489 D.5.1 Digital Bond's SCADA Security Scientific Symposium (S4)

4490 Since 2007, S4 has hosted an ICS security conference. The conference initially was founded for 4491 a need to showcase advanced and highly technical content to the ICS audience. S4 has since

grown to also accommodate other ICS security content but remains a premier venue to presenttechnical findings within OT security.

4494 https://s4xevents.com/

4495 D.5.2 Industrial Control Systems Joint Working Group (ICSJWG)

- 4496 CISA hosts a bi-annual working group which provides a vehicle for communicating and
- 4497 partnering across all Critical Infrastructure (CI) Sectors between federal agencies and
- 4498 departments, as well as private asset owners/operators of industrial control systems. The goal of
- the ICSJWG is to continue and enhance the collaborative efforts of the industrial control systems
- 4500 stakeholder community in securing CI by accelerating the design, development, and deployment
- 4501 of secure industrial control systems.
- 4502 <u>https://www.cisa.gov/uscert/ics/Industrial-Control-Systems-Joint-Working-Group-ICSJWG</u>

4503 **D.5.3** IFIP Working Group 11.10 on Critical Infrastructure Protection

- 4504 An active international community of scientists, engineers and practitioners dedicated to
- 4505 advancing the state-of-the-art of research and practice in the emerging field of critical 4506 infrastructure protection.
- 4507 <u>http://ifip1110.org/Conferences/</u>

4508 **D.5.4** SecurityWeek's ICS Cyber Security Conference

4509 Since 2002, SecurityWeek has held an annual conference focused on cybersecurity for the

4510 industrial control systems sector. An event where ICS users, ICS vendors, system security

4511 providers and government representatives meet to discuss the latest cyber-incidents, analyze their

- 4512 causes, and cooperate on solutions.
- 4513 <u>https://www.icscybersecurityconference.com/</u>

4514D.5.5Stockholm International Summit on Cyber Security in SCADA and ICS4515(CS3STHLM)

- 4516 Organized beginning in 2014, CS3STHLM has quickly become the premier ICS Security
- 4517 Summit in Northern Europe. CS3STHLM is a summit that offers generous time for lectures,
- 4518 networking, and knowledge sharing in regard to today's ICS security challenges.

4519 <u>https://cs3sthlm.se/</u>

4520 Appendix E—OT Security Capabilities and Tools

This appendix provides an overview of key security technologies that are available to or being
developed to support the OT community. There are several security products that are marketed
specifically for OT, while others are general IT security products that are also applicable to OT.
Many cybersecurity products are marketed today as a single platform that combines many of the
capabilities and tools listed here. Each organization should make a risk-based determination on

4526 whether to employ the security technologies and tools mentioned in this appendix.

4527 E.1 Network Segmentation and Isolation

4528 Network segmentation and separation technologies allow OT network owners to implement
4529 cybersecurity strategies that isolate devices and network traffic by both physical and logical
4530 means. Popular tooling for this capability area is described below.

4531 E.1.1 Firewalls

4532 Firewalls can be used to logically enforce user-defined rule sets on network traffic. Commonly

4533 placed at network boundaries, firewalls can limit both incoming and outgoing traffic based on a

- 4534 variety of data characteristics.
- 4535 There are several types of general IT firewalls. Basic *packet filtering firewalls* directly inspect
- 4536 current network traffic at OSI layers 3 and 4 to inform decisions on whether to drop or forward
- 4537 packets to their destination. Conversely, *stateful inspection firewalls* draw upon memory of both
- 4538 past and present network connections when making filtering decisions, thereby offering more
- 4539 capability at an increased computational cost. *Next generation firewalls (NGFWs)* expand upon
- 4540 stateful inspection firewalls by adding features such as application filtering, deep packet
- 4541 inspection, VPN traffic awareness, adaptive rules, and threat detection.
- 4542 Several vendors also offer OT-specific firewalls. The OT-specific implementations are often
- 4543 preferred over their generic IT counterparts due to their unique feature sets specific to OT
- 4544 networks. For example, they often provide built-in parsers for common OT protocols such as
- 4545 DNP3, CIP, and Modbus, allowing for deep packet inspection of OT traffic.

4546 **E.1.2 Unidirectional Gateways**

- 4547 Unidirectional gateways, also referred to as data diodes, are designed to only allow data
 4548 transmission in a single direction. Unlike a firewall, data diodes cannot be programmed to allow
 4549 data to flow in both directions; the hardware is incapable. A common use case is placing a data
 4550 diode at the boundary between the operational network and the enterprise network. The data
 4551 diode would allow network traffic to leave the operational network, but not enter, preventing a
- 4552 potential avenue of cyber attack.

4553 E.1.3 Virtual Local Area Networks (VLAN)

4554 A VLAN can be used to logically separate areas within a network when physical separation may 4555 not be feasible due to cost or other prohibitive measures. VLANs are implemented on modern 4556 network switching equipment that logically separates network traffic based on switch port. For

4557 example, an 8-port switch can be configured to separate traffic into two VLANs. One VLAN

4558 would be provided for ports 1-4, while another would be provided for ports 5-8. While all 8 ports

4559 are physically connected to a single device, each port is only logically connected to the other

4560 ports within its VLAN.

4561 E.1.4 Software-Defined Networking (SDN)

4562 Traditional networking switches are responsible for both forwarding packets (data plane) and running the distributed algorithms that determine routing (control plane). SDN is a technology 4563 4564 that evolves this concept by keeping the data plane at the switch and moving the control plane to a centralized controller. The centralized controller acts as an abstraction layer for network 4565 programmability, eliminating the need to individually manage each switch within the network. 4566 4567 SDN allows for easy dynamic reconfiguration of the data plane, which can allow for quick 4568 isolation of devices or redirection and duplication of traffic for monitoring and data capture. Utilizing SDN technology within an OT environment allows asset owners greater flexibility 4569 when initially designing their network architectures and when updating them in the future. 4570

4571 E.2 Network Monitoring/Security Information and Event Management (SIEM)

4572 Network monitoring technologies allow OT network owners to maintain situational awareness of

4573 their controlled processes and support cybersecurity objectives such as event or anomaly

4574 detection. OT vendors often market their network monitoring technology as capable of

4575 integration with SIEM technologies. These systems collect data through log aggregation and

4576 network scanning tools, detect threats through analytics, and can provide automated incident

4577 response. Capabilities continue to be added, including use of machine learning and artificial

- 4578 intelligence to improve detection and reduce unnecessary alerts. OT owners must exercise
- 4579 caution when implementing these technologies as they can directly impact the availability of the 4580 controlled process
- 4580 controlled process.

4581 E.2.1 Centralized Logging

4582 System and network logs from all sources in an environment are the foundation of SIEM. Logs
4583 act as the primary historical artifact for incident response. When aggregated at a central location,
4584 logs can be analyzed together to provide a holistic view of the network state. A SIEM will utilize
4585 a variety of sensors strategically placed within a target network to collect logs from endpoints, as

- 4586 well as network traffic information, which is then stored in a database for real-time analysis.
- 4587 Specific to OT networks, data historians can serve as a supplemental source of event data
- 4588 providing greater context surrounding a cyber incident.

4589 E.2.2 Passive Scanning

4590 Passive network scans are a form of network discovery that inspects existing network traffic by

4591 watching traffic passing through network switches or other dedicated network capture devices.

4592 Systems that implement passive network scans do not introduce any additional traffic to the

- 4593 network, which is ideal for sensitive devices found on OT networks that may exhibit unexpected
- 4594 behavior when directly probed. Passive scanning can identify all devices actively communicating

4595 on network segments being monitored. Through inspection of network data, passive scanning

4596 can identify significant amounts of information about devices, potentially including, but not

4597 limited to, manufacturer, part number, and firmware version. Passive scanning cannot identify

4598 devices that are not actively communicating, nor can it inspect encrypted traffic (without special

4599 provisioning). Additionally, a passive scan will often take days to complete due to its 4600 dependence on existing network traffic

4600 dependence on existing network traffic.

4601 E.2.3 Active Scanning

Active network scans are a form of network discovery that directly probe the network for
attached devices. Systems employing active scanning introduce traffic to the network and will
directly interact with the devices within the scan's scope. OT network owners should exercise
extreme caution when permitting active scanning on an operational network due to device
sensitivity on the target network.

4607 Some OT-specific scanning devices combine passive and active scanning to enable a safer

4608 version of active scanning. Safe active scanning first learns about connected equipment through

4609 passive means and then uses device-specific communication to actively gain additional

4610 information about connected equipment without risks to OT operations.

4611 E.2.4 Malware Detection

4612 Endpoint malware detection can be bolstered with antivirus software. Antivirus software

4613 monitors activity on the host device and will alert the user to possible malicious activities. Older

detection techniques rely on file signatures to detect known threats. Over time, malware

4615 developers have found ways to bypass this mechanism such as with polymorphic code. Modern

4616 antivirus software uses behavioral analysis of running processes and advanced file analysis to

4617 detect potentially malicious activity.

4618 Host-based malware detection with antivirus software may not be advisable for some OT

4619 endpoints due to OS incompatibility, software incompatibility, or runtime requirements.

4620 However, network-based malware detection can still be utilized. Unlike host-based antivirus

4621 software, network-based malware detection runs on an independent system that aggregates and

4622 inspects network traffic for anomalies. Network-based malware detection offers similar

4623 capabilities to host-based detection without the computational overhead being placed on the

4624 defended component. Network-based detection is a primary component of SIEM packages.

4625 E.2.5 Behavioral Anomaly Detection

4626 Behavioral anomaly detection (BAD) systems compare the current state of an environment with

4627 a baseline to detect abnormal activity. This baseline is used to detect anomalous events to be

4628 investigated further. This could be unusual network traffic such as large amounts of data

4629 transferred, new ports/protocols, or new connections between devices. Unusual activity on an

4630 endpoint may include excessive processor usage, logins outside of work hours, or new processes.

4631 The detectable events are dependent on the sensor capabilities of the specific implementation.

4632 Some BAD systems utilize artificial intelligence (AI) and machine learning (ML) algorithms to 4633 automatically update the baseline model. By automating the process of updating the baseline, the BAD system is able to maintain knowledge of normal activity even as the environment evolvesover time. This ultimately reduces false positive detections, improving incident response

4636 capability.

4637 E.2.6 Data Loss Prevention (DLP)

4638 DLP is a collection of tools built to improve the confidentiality of sensitive data on a network.

- 4639 DLP is often marketed as a feature set within SIEM that actively monitors both data at rest to
- 4640 prevent unauthorized access and data in transit to prevent unauthorized extraction. In cases
- 4641 where DLP is unable to prevent the data loss, it can still alert the organization to a breach.

4642 E.2.7 Deception Technology

A deception technology uses decoy data and/or devices placed across the network to lure attackers away from legitimate assets. Decoys can range from access credentials and files to complete endpoints. When a threat actor interacts with a decoy, it triggers an alarm to alert cyber defenders to its presence. Defenders can then choose to further monitor the adversary for intelligence or immediately mitigate the threat. Because decoys do not actively interact with other network components, deception technologies can support malicious activity monitoring and detection without jeopardizing the controlled process.

4650 E.2.8 Digital Twins

A digital twin is a digital replica of a physical system or component. They can be deployed
within OT environments as a tool for anomaly detection. The digital twin utilizes real-time
sensor inputs and compares them using heuristics and algorithms (including machine learning)
against a baseline model. Operational anomalies detected by digital twins most often indicate a
maintenance or failure situation. However, a detected operational anomaly could indicate an
advanced cyber attack which has bypassed other security mechanisms and otherwise would have
gone undetected.

4658 E.3 Data Security

4659 Various data security technologies assist information owners in protecting the confidentiality,
4660 integrity, and availability of their data. OT network owners are encouraged to identify the critical
4661 files and data residing in their networks and implement data security technologies to mitigate
4662 risk.

4663 E.3.1 Backup Storage

Backup storage is an alternative file storage location where copies of critical files are stored and
protected to assist with recovery should the originals be lost, compromised, or unusable. Using
backup tools and procedures is fundamental to ensuring the availability of critical data within an
OT network environment. Based on risk, backup plans should specify which files require
backup, how often they should be backed up, the number of copies to be made, the location of
the backup (e.g., offline, offsite) and how long backup copies should be kept. Various solutions
exist that automate backup storage of critical data on a regular basis.

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

4671 E.3.2 Immutable Storage

4672 Immutable storage is a special type of backup storage that provides additional data integrity
4673 through data storage in a read-only format. Immutable storage can be used to store backups of
4674 programs or device configurations. It can also be used as a read-only drive in a maintenance
4675 workstation for added protection against installation of new software.

4676 E.3.3 File Hashing

4677 Integrity of critical files such as program logic can be validated by using hashes. A hashing 4678 algorithm calculates a fixed-size string from a file's contents. If a hash is calculated and stored 4679 for a critical file when it is first created, the integrity of the file can be checked later by calculating the hash again. For example, if an end user needs to restore functionality to a device 4680 4681 by returning it to a baseline, the integrity of the baseline files can first be validated by 4682 recomputing the file hash. If a different hash is calculated for a target file, the data owner can assume the backup files have been compromised. Many data backup software systems include 4683 hashing within their feature set. NIST-approved hash algorithms are specified in FIPS 180-4, 4684 4685 Secure Hash Standard [FIPS180] and FIPS 202, SHA-3 Standard [FIPS202].

4686 E.3.4 Digital Signatures

4687 Digital signatures are an additional data integrity measure. They are the electronic analogue of a
4688 written signature providing assurance that the claimed signatory signed the information, and that
4689 the information was not modified following signature. FIPS 186-4, *Digital Signature Standard*4690 (*DSS*) [FIPS186] specifies three NIST-approved digital signature algorithms: DSA, RSA, and
4691 ECDSA.

4692 E.3.5 Block Ciphers

Asset owners can protect the confidentiality of data at rest using block ciphers. Block ciphers are
algorithms that encrypt data in block-sized chunks rather than one bit at a time. This is beneficial
when encrypting large amounts of data at once. NIST-approved block ciphers are Advanced
Encryption Standard (AES) and Triple Data Encryption Standard (DES). AES is specified in
FIPS 197, Advanced Encryption Standard [FIPS197]. Triple DES is specified in NIST SP 80067 Rev. 2, Recommendation for the Triple Data Encryption Algorithm Block Cipher [SP800-67].

4699 E.3.6 Remote Access

When accessing systems or data remotely, security controls should be implemented to prevent
unauthorized access to the organization's networks, systems, and data. A virtual private network
(VPN) is a set of technologies and protocols designed to support secure remote access to network
environments. A VPN can provide both strong authentication and encryption to secure
communication data by establishing a private network that operates as an overlay on a public
infrastructure. The most common types of VPN technologies implemented today are:

4706
 4707
 4707
 4708
 Internet Protocol Security (IPsec). IPsec supports two encryption modes: transport and tunnel. Transport mode encrypts only the data portion (payload) of each packet while leaving the packet header untouched. The more secure tunnel mode adds a new header to

- 4709 each packet and encrypts both the original header and the payload. On the receiving side,
 4710 an IPsec-compliant device decrypts each packet. See NIST SP 800-77 Rev. 1, *Guide to*4711 *IPsec VPNs* for more information.
- Transport Layer Security (TLS). Sometimes referred to by the legacy terminology of Secure Sockets Layer (SSL), TLS provides a secure channel between two machines that encrypts the contents of each packet. TLS is most often recognized for securing HTTP traffic; this protocol implementation is known as HTTP Secure (HTTPS). However, TLS is not limited to HTTP traffic; it can be used to secure many application-layer programs. For more information, see NIST SP 800-52 Rev. 2, *Guidelines for the Selection*, *Configuration, and Use of Transport Layer Security (TLS) Implementations*.
- 4719
 Secure Shell (SSH). SSH is a command interface and protocol for securely gaining 4720 access to a remote computer. It is widely used by network administrators to remotely 4721 control Linux-based servers. SSH is a secure alternative to a telnet application. SSH is 4722 included in most UNIX distributions and is typically added to other platforms through a 4723 third-party package.
- 4724 When implemented with diligence, remote access technologies can improve an organization's
- 4725 capability. There are several options for remote access and desktop control including Remote
- 4726 Desktop Protocol (RDP), screens, and other standalone packages. If remote technologies are not
- 4727 managed properly using vulnerability and patch management, these connections serve as another
- 4728 channel for an adversary to exploit.

4729

4730 Appendix F—OT Overlay

4731 Note to Readers

The OT overlay is a partial tailoring of the controls and control baselines in SP 800-53 Rev. 5
and adds supplementary guidance specific to OT. The concept of overlays is discussed in
Appendix C of SP 800-53B. The OT overlay is intended to be applicable to all OT systems in all
industrial sectors. Further tailoring can be performed to add specificity to a particular sector (e.g.,
pipeline, energy). Ultimately, an overlay may be produced for a specific system (e.g., the XYZ
company).

This OT overlay constitutes supplemental guidance and tailoring for SP 800-53 Revision 5.
Please be sure you are looking at the correct version of SP 800-53. Duplicating Appendix F of
SP 800-53 would increase the size of this publication significantly. Therefore, the drafting
committee has decided to not duplicate Appendix F here. The reader should have SP 800-53
Revision 5 available.

4743 The authoring team also considered that this OT overlay may serve as a model for other
4744 overlays. Feedback on this Appendix's structure would be appreciated, especially on the level of
4745 abstraction and whether the examples provided in the supplemental guidance are
4746 sufficient/beneficial for implementation.

4747 Overlays provide a structured approach to help organizations tailor control baselines and develop

4748 specialized security plans that can be applied to specific mission/business functions,

4749 environments of operation, and/or technologies. This specialization approach is important as the

4750 number of threat-driven controls and control enhancements in the catalog increases and

4751 organizations develop risk management strategies to address their specific protection needs

4752 within defined risk tolerances.

4753 A repository of overlays may be found at <u>https://csrc.nist.gov/Projects/risk-management/sp800-</u>

- 4754 <u>53-controls/overlay-repository</u>. This overlay may be referenced as the NIST SP 800-82 Revision
- 4755 3 Operational Technology Overlay ("NIST SP 800-82 Rev 3 OT Overlay"). It is based on NIST
- 4756 SP 800-53 Revision 5 [SP800-53r5].

4757 NIST developed this overlay in furtherance of its statutory responsibilities under the Federal

- 4758 Information Security Modernization Act (FISMA) of 2014 (Public Law 113-283) [FISMA],
- 4759 Presidential Policy Directive 21 (PPD-21) [PPD-21], and Executive Order 13636 [EO13636].
- 4760 NIST is responsible for developing standards and guidelines, including minimum requirements,
- 4761 for providing adequate information security for all agency operations and assets, but such
- 4762 standards and guidelines shall not apply to national security systems without the express
- 4763 approval of appropriate federal officials exercising policy authority over such systems.

4764F.1Overlay Characteristics

4765 OT encompasses a broad range of programmable systems and devices that interact with the 4766 physical environment (or manage devices that interact with the physical environment). These

4767 systems/devices detect or cause a direct change through the monitoring and/or control of devices,

- 4768 processes, and events. Examples include industrial control systems, building automation systems,
- transportation systems, physical access control systems, physical environment monitoring
- 4770 systems, and physical environment measurement systems.
- 4771 ICS consists of combinations of control components (e.g., electrical, mechanical, hydraulic,
- 4772 pneumatic) that act together to achieve an objective (e.g., manufacturing, transportation of matter
- 4773 or energy). The part of the system primarily concerned with producing an output is referred to as
- 4774 the process. The control part of the system includes the specification of the desired output or
- 4775 performance. Control can be fully automated or may include a human in the loop.
- 4776 Section 2 provides an overview of various OT systems such as Supervisory Control and Data
- 4777 Acquisition (SCADA), Distributed Control Systems (DCS), Programmable Logic Controllers
- 4778 (PLCs), Building Automation Systems (BAS), Physical Access Control Systems (PACS), and
- 4779 the Industrial Internet of Things (IIoT).

4780 **F.2** Applicability

4781 The purpose of this overlay is to provide guidance for securing OT systems. This overlay has

- 4782 been prepared for use by federal agencies. It may be used by nongovernmental organizations on
- 4783 a voluntary basis.
- 4784 Privacy is a risk consideration for OT systems. For additional guidance, refer to the NIST
- 4785 Privacy Framework [PF]. The application of privacy in OT will depend on sector and
- 4786 organizational risks; therefore, controls exclusively related to privacy have not been included in
- this OT overlay. Each organization will need to independently determine applicability. All
- 4788 controls and control enhancements that only appear in the privacy baseline have been removed
- 4789 from this OT overlay according to this rationale.

4790 F.3 Overlay Summary

- Table 22 provides a summary of the controls and control enhancements from NIST SP 800-53
- 4792 Rev. 5, Appendix F [SP800-53r5] that have been allocated to the initial control baselines (i.e.,
- 4793 Low, Moderate, and High) along with indications of OT Discussion and OT tailoring. The table4794 uses the following conventions:
- **Bold** indicates controls and control enhancements with OT Discussions.
- 4796
 Underline indicates that this overlay has added a control to the baseline, supplemental to the baselines provided in NIST SP 800-53B.
- 4798
 4798 Strikethrough indicates that a control or control enhancement has been removed from this baseline, compared to the baselines provided in NIST SP 800-53B.
- 4800 In the following example, OT Discussion was added to Control Enhancement 1 of AU-4
- 4801 (bolded). In addition, Control Enhancement 1 of AU-4 was added to the Low, Moderate (Mod),
- 4802 and High baselines (underlined), compared with the NIST 800-53B baseline which did not 4803 include AU 4 Control Enhancement 1
- 4803 include AU-4 Control Enhancement 1.

AU-4	Audit Storage Capacity	AU-4 <u>(1</u>)	AU-4 <u>(1)</u>	AU-4 <u>(1)</u>
------	------------------------	------------------	-----------------	-----------------

4804

4805 Some controls and control enhancements are useful to many OT environments but are not

4806 applicable across all OT sectors or architectures. Such controls may have additional OT

4807 discussion. These will appear in the individual control tables. Controls and control enhancements

4808 without baselines are not included in Table 22.

4809

Table 22: Control Baselines

CNTL		INI	TIAL CONTROL BASI	ELINES		
NO.	CONTROL NAME	LOW	MOD	HIGH		
AC-1	Policy and Procedures	AC-1	AC-1	AC-1		
AC-2	Account Management	AC-2	AC-2 (1) (2) (3) (4) (5) (13)	AC-2 (1) (2) (3) (4) (5) (11) (12) (13)		
AC-3	Access Enforcement	AC-3	AC-3	AC-3 <u>(11)</u>		
AC-4	Information Flow Enforcement		AC-4	AC-4 (4)		
AC-5	Separation of Duties		AC-5	AC-5		
AC-6	Least Privilege		AC-6 (1) (2) (5) (7) (9) (10)	AC-6 (1) (2) (3) ((7) (9) (10)		
AC-7	Unsuccessful Logon Attempts	AC-7	AC-7	AC-7		
AC-8	System Use Notification	AC-8	AC-8	AC-8		
AC-10	Concurrent Session Control			AC-10		
AC-11	Device Lock		AC-11 (1)	AC-11 (1)		
AC-12	Session Termination		AC-12	AC-12		
AC-14	Permitted Actions without Identification or Authentication	AC-14	AC-14	AC-14		
AC-17	Remote Access	AC-17 <u>(9)</u>	AC-17 (1) (2) (3) (4) (9) (10)	AC-17 (1) (2) (3) (4 (9) (10)		
AC-18	Wireless Access	AC-18	AC-18 (1) (3)	AC-18 (1) (3) (4) (5		
AC-19	Access Control for Mobile Devices	AC-19	AC-19 (5)	AC-19 (5)		
AC-20	Use of External Systems	AC-20	AC-20 (1) (2)	AC-20 (1) (2)		
AC-21	Information Sharing		AC-21	AC-21		
AC-22	Publicly Accessible Content	AC-22	AC-22	AC-22		
AT-1	Policy and Procedures	AT-1	AT-1	AT-1		
AT-2	Literacy Training and Awareness	AT-2 (2)	AT-2 (2) (3) (4)	AT-2 (2) (3) <u>(4)</u>		

CNTL		INI	TIAL CONTROL BAS	ELINES	
NO.	CONTROL NAME	LOW	MOD	HIGH	
AT-3	Role-Based Training	AT-3	AT-3	AT-3	
AT-4	Training Records	AT-4	AT-4	AT-4	
AU-1	Policy and Procedures	AU-1	AU-1	AU-1	
AU-2	Event Logging	AU-2	AU-2	AU-2	
AU-3	Content of Audit Records	AU-3	AU-3 (1)	AU-3 (1)	
AU-4	Audit Log Storage Capacity	AU-4 <u>(1</u>)	AU-4 <u>(1)</u>	AU-4 <u>(1)</u>	
AU-5	Response to Audit Logging Process Failures	AU-5	AU-5	AU-5 (1) (2)	
AU-6	Audit Record Review, Analysis, and Reporting	AU-6	AU-6 (1) (3)	AU-6 (1) (3) (5) (6)	
AU-7	Audit Record Reduction and Report Generation		AU-7 (1)	AU-7 (1)	
AU-8	Time Stamps	AU-8	AU-8	AU-8	
AU-9	Protection of Audit Information	AU-9	AU-9 (4)	AU-9 (2) (3) (4)	
AU-10	Non-repudiation			AU-10	
AU-11	Audit Record Retention	AU-11	AU-11	AU-11	
AU-12	Audit Generation	AU-12	AU-12	AU-12 (1) (3)	
CA-1	Policy and Procedures	CA-1	CA-1	CA-1	
CA-2	Control Assessments	CA-2	CA-2 (1)	CA-2 (1) (2)	
CA-3	Information Exchange	CA-3	CA-3	CA-3 (6)	
CA-5	Plan of Action and Milestones	CA-5	CA-5	CA-5	
CA-6	Authorization	CA-6	CA-6	CA-6	
CA-7	Continuous Monitoring	CA-7 (4)	CA-7 (1) (4)	CA-7 (1) (4)	
CA-8	Penetration Testing			CA-8 (1)	
CA-9	Internal System Connections	CA-9	CA-9	CA-9	
CM-1	Policy and Procedures	CM-1	CM-1	CM-1	
CM-2	Baseline Configuration	CM-2	CM-2 (2) (3) (7)	CM-2 (2) (3) (7)	
CM-3	Configuration Change Control		СМ-3 (2) (4)	CM-3 (1) (2) (4) (6)	
CM-4	Impact Analysis	CM-4	CM-4 (2)	CM-4 (1) (2)	

CNTL	CONTROL NAME	INITIAL CONTROL BASELINES				
NO.	CONTROL NAME	LOW	MOD	HIGH		
CM-5	Access Restrictions for Change	CM-5	CM-5	CM-5 (1)		
CM-6	Configuration Settings	CM-6	CM-6	CM-6 (1) (2)		
CM-7	Least Functionality	CM-7	CM-7 (1) (2) (5)	CM-7 (1) (2) (5)		
CM-8	System Component Inventory	CM-8	CM-8 (1) (3)	CM-8 (1) (2) (3) (4)		
CM-9	Configuration Management Plan		CM-9	CM-9		
CM-10	Software Usage Restrictions	CM-10	CM-10	CM-10		
CM-11	User-Installed Software	CM-11	CM-11	CM-11		
CM-12	Information Location		CM-12 (1)	CM-12 (1)		
CP-1	Policy and Procedures	CP-1	CP-1	CP-1		
CP-2	Contingency Plan	CP-2	CP-2 (1) (3) (8)	CP-2 (1) (2) (3) (5) (8)		
CP-3	Contingency Training	CP-3	CP-3	CP-3 (1)		
CP-4	Contingency Plan Testing	CP-4	CP-4 (1)	CP-4 (1) (2)		
CP-6	Alternate Storage Site		CP-6 (1) (3)	CP-6 (1) (2) (3)		
CP-7	Alternate Processing Site		CP-7 (1) (2) (3)	CP-7 (1) (2) (3) (4)		
CP-8	Telecommunications Services		CP-8 (1) (2)	CP-8 (1) (2) (3) (4)		
CP-9	System Backup	CP-9	CP-9 (1) (8)	CP-9 (1) (2) (3) (5) (8)		
CP-10	System Recovery and Reconstitution	CP-10	CP-10 (2) <u>(6)</u>	(0) CP-10 (2) (4) <u>(6)</u>		
CP-12	Safe Mode	<u>CP-12</u>	<u>CP-12</u>	<u>CP-12</u>		
IA-1	Policy and Procedures	IA-1	IA-1	IA-1		
IA-2	Identification and Authentication (Organizational Users)	IA-2 (1) (2) (8) (12)	IA-2 (1) (2) (8) (12)	IA-2 (1) (2) (5) (8) (12)		
IA-3	Device Identification and Authentication	<u>IA-3</u>	IA-3	IA-3		
IA-4	Identifier Management	IA-4	IA-4 (4) IA-4 (4)			
IA-5	Authenticator Management	IA-5 (1) IA-5 (1) (2) (6) IA-5 (1) (2) (6				
IA-6	Authentication Feedback	IA-6	IA-6	IA-6		
IA-7	Cryptographic Module Authentication	IA-7	IA-7	IA-7		
IA-8	Identification and Authentication (Non- Organizational Users)	IA-8 (1) (2) (4)	IA-8 (1) (2) (4)	IA-8 (1) (2) (4)		

CNTL		IN	ITIAL CONTROL BASI	ELINES	
NO.	CONTROL NAME	LOW	MOD	HIGH	
IA-11	Re-authentication	IR-11	IR-11	IR-11	
IA-12	Identity Proofing		IA-12 (2) (3) (5)	IA-12 <u>(1)</u> (2) (3) (4) (5)	
IR-1	Policy and Procedures	IR-1	IR-1	IR-1	
IR-2	Incident Response Training	IR-2	IR-2	IR-2 (1) (2)	
IR-3	Incident Response Testing		IR-3 (2)	IR-3 (2)	
IR-4	Incident Handling	IR-4	IR-4 (1)	IR-4 (1) (4) (11)	
IR-5	Incident Monitoring	IR-5	IR-5	IR-5	
IR-6	Incident Reporting	IR-6	IR-6 (1) (3)	IR-6 (1) (3)	
IR-7	Incident Response Assistance	IR-7	IR-7 (1)	IR-7 (1)	
IR-8	Incident Response Plan	IR-8	IR-8	IR-8	
MA-1	Policy and Procedures	MA-1	MA-1	MA-1	
MA-2	Controlled Maintenance	MA-2	MA-2	MA-2 (2)	
MA-3	Maintenance Tools		MA-3 (1) (2) (3)	MA-3 (1) (2) (3)	
MA-4	Nonlocal Maintenance	MA-4	MA-4 <u>(1)</u>	MA-4 <u>(1)</u> (3)	
MA-5	Maintenance Personnel	MA-5	MA-5	MA-5 (1)	
MA-6	Timely Maintenance		MA-6	MA-6	
MA-7	Field Maintenance	<u>MA-7</u>	<u>MA-7</u>	<u>MA-7</u>	
MP-1	Policy and Procedures	MP-1	MP-1	MP-1	
MP-2	Media Access	MP-2	MP-2	MP-2	
MP-3	Media Marking		MP-3	MP-3	
MP-4	Media Storage		MP-4	MP-4	
MP-5	Media Transport		MP-5 MP-5		
MP-6	Media Sanitization	MP-6	MP-6 MP-6 (1) (2) (
MP-7	Media Use	MP-7	MP-7 MP-7 MP-7		
PE-1	Policy and Procedures	PE-1	PE-1	PE-1	
PE-2	Physical Access Authorizations	PE-2	PE-2	PE-2	

CNTL		רואו	TIAL CONTROL BASE	LINES
NO.	CONTROL NAME	LOW	MOD	HIGH
PE-3	Physical Access Control	PE-3	PE-3	PE-3 (1)
PE-4	Access Control for Transmission		PE-4	PE-4
PE-5	Access Control for Output Devices		PE-5	PE-5
PE-6	Monitoring Physical Access	PE-6	PE-6 (1) <u>(4)</u>	PE-6 (1) (4)
PE-8	Visitor Access Records	PE-8	PE-8	PE-8 (1)
PE-9	Power Equipment and Cabling		PE-9	PE-9
PE-10	Emergency Shutoff		PE-10	PE-10
PE-11	Emergency Power		PE-11	PE-11 (1)
PE-12	Emergency Lighting	PE-12	PE-12	PE-12
PE-13	Fire Protection	PE-13	PE-13 (1)	PE-13 (1) (2)
PE-14	Environmental Controls	PE-14	PE-14	PE-14
PE-15	Water Damage Protection	PE-15	PE-15	PE-15 (1)
PE-16	Delivery and Removal	PE-16	PE-16	PE-16
PE-17	Alternate Work Site		PE-17	PE-17
PE-18	Location of System Components			PE-18
PE-22	Component Marking		<u>PE-22</u>	<u>PE-22</u>
PL-1	Policy and Procedures	PL-1	PL-1	PL-1
PL-2	System Security and Privacy Plans	PL-2	PL-2	PL-2
PL-4	Rules of Behavior	PL-4 (1)	PL-4 (1)	PL-4 (1)
PL-8	Security and Privacy Architecture		PL-8	PL-8
PL-10	Baseline Selection	PL-10) PL-10 PL-	
PL-11	Baseline Tailoring	PL-11	PL-11	PL-11
PM-1	Information Security Program Plan		PM-1	
PM-2	Information Security Program Leadership Role		PM-2	
PM-3	Information Security and Privacy Resources		PM-3	
PM-4	Plan of Action and Milestones Process		PM-4	

CNTL		INITIAL CONTROL BASELINES			
NO.	CONTROL NAME	LOW	MOD	HIGH	
PM-5	System Inventory	PM-5			
PM-6	Measures of Performance		PM-6		
PM-7	Enterprise Architecture		PM-7		
PM-8	Critical Infrastructure Plan		PM-8		
PM-9	Risk Management Strategy		PM-9		
PM-10	Authorization Process		PM-10		
PM-11	Mission and Business Process Definition		PM-11		
PM-12	Insider Threat Program		PM-12		
PM-13	Security and Privacy Workforce		PM-13		
PM-14	Testing, Training, and Monitoring		PM-14		
PM-15	Security and Privacy Groups and Associations		PM-15		
PM-16	Threat Awareness Program		PM-16		
PM-17	Protecting Controlled Unclassified Information on External Systems	PM-17			
PM-18	Privacy Program Plan		PM-18		
PM-19	Privacy Program Leadership Role		PM-19		
PM-20	Dissemination of Privacy Program Information		PM-20 (1)		
PM-21	Accounting of Disclosures		PM-21		
PM-22	Personally Identifiable Information Quality Management		PM-22		
PM-23	Data Governance Body		PM-23		
PM-24	Data Integrity Board		PM-24		
PM-25	Minimization of Personally Identifiable Information Used in Testing, Training, and Research	PM-25			
PM-26	Complaint Management	PM-26			
PM-27	Privacy Reporting	PM-27			
PM-28	Risk Framing	PM-28			
PM-29	Risk Management Program Leadership Roles		PM-29		
PM-30	Supply Chain Risk Management Strategy		PM-30 (1)		

CNTL		INITIAL CONTROL BASELINES			
NO.	CONTROL NAME	LOW	MOD	HIGH	
PM-31	Continuous Monitoring Strategy		PM-31		
PM-32	Purposing		PM-32		
PS-1	Policy and Procedures	PS-1	PS-1	PS-1	
PS-2	Position Risk Designation	PS-2	PS-2		
PS-3	Personnel Screening	PS-3	PS-3	PS-3	
PS-4	Personnel Termination	PS-4	PS-4	PS-4 (2)	
PS-5	Personnel Transfer	PS-5	PS-5	PS-5	
PS-6	Access Agreements	PS-6	PS-6	PS-6	
PS-7	External Personnel Security	PS-7	PS-7	PS-7	
PS-8	Personnel Sanctions	PS-8	PS-8	PS-8	
PS-9	Position Descriptions	PS-9	PS-9	PS-9	
RA-1	Policy and Procedures	RA-1	RA-1	RA-1	
RA-2	Security Categorization	RA-2	RA-2	RA-2	
RA-3	Risk Assessment	RA-3 (1)	RA-3 (1)	RA-3 (1)	
RA-5	Vulnerability Monitoring and Scanning	RA-5 (2) (11)	RA-5 (2) (5) (11)	RA-5 (2) (4) (5) (11)	
RA-7	Risk Response	RA-7	RA-7	RA-7	
RA-9	Criticality Analysis		RA-9	RA-9	
SA-1	Policy and Procedures	SA-1	SA-1	SA-1	
SA-2	Allocation of Resources	SA-2	SA-2	SA-2	
SA-3	System Development Life Cycle	SA-3	SA-3	SA-3	
SA-4	Acquisition Process	SA-4 (10) <u>(12)</u>	SA-4 (1) (2) (5) (9)		
SA-5	System Documentation	SA-5	(10) (12) (10) (1 SA-5 SA-5		
SA-8	Security and Privacy Engineering Principles	SA-8 SA-8 SA-8			
SA-9	External System Services	SA-9	SA-9 (2)	SA-9 (2)	
SA-10	Developer Configuration Management		SA-10	SA-10	
SA-11	Developer Testing and Evaluation		SA-11	SA-11	

CNTL		INITIAL CONTROL BASELINES			
NO.	CONTROL NAME	LOW	MOD	HIGH SA-15 (3)	
SA-15	Development Process, Standards, and Tools		SA-15 (3)		
SA-16	Developer-Provided Training			SA-16	
SA-17	Developer Security Architecture and Design			SA-17	
SA-21	Developer Screening			SA-21	
SA-22	Unsupported System Components	SA-22	SA-22	SA-22	
SC-1	Policy and Procedures	SC-1	SC-1	SC-1	
SC-2	Separation of System and User Functionality		SC-2	SC-2	
SC-3	Security Function Isolation			SC-3	
SC-4	Information in System Shared Resources		SC-4	SC-4	
SC-5	Denial-of-Service Protection	SC-5	SC-5	SC-5	
SC-7	Boundary Protection	SC-7 <u>(28) (29)</u>	SC-7 (3) (4) (5) (7) (8) <u>(18)</u> <u>(28)</u> (29)	SC-7 (3) (4) (5) (7) (8) (18) (21) <u>(28)</u> (29)	
SC-8	Transmission Confidentiality and Integrity		SC-8 (1)	SC-8 (1)	
SC-10	Network Disconnect		SC-10	SC-10	
SC-12	Cryptographic Key Establishment and Management	SC-12	SC-12	SC-12 (1)	
SC-13	Cryptographic Protection	SC-13	SC-13	SC-13	
SC-15	Collaborative Computing Devices and Applications	SC-15	SC-15	SC-15	
SC-17	Public Key Infrastructure Certificates		SC-17	SC-17	
SC-18	Mobile Code		SC-18	SC-18	
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	SC-20	SC-20	SC-20	
SC-21	Secure Name /Address Resolution Service (Recursive or Caching Resolver)	SC-21	SC-21	SC-21	
SC-22	Architecture and Provisioning for Name/Address Resolution Service	SC-22	SC-22	SC-22	
SC-23	Session Authenticity		SC-23 SC-23		
SC-24	Fail in Known State	<u>SC-24</u> SC-24			
SC-28	Protection of Information at Rest		SC-28 (1)	SC-28 (1)	
SC-39	Process Isolation	SC-39	SC-39	SC-39	
SC-41	Port and I/O Device Access	<u>SC-41</u>	<u>SC-41</u>	<u>SC-41</u>	

CNTL	INITIAL CONTROL BASELINES					
NO.	CONTROL NAME	LOW	MOD	HIGH		
SC-45	System Time Synchronization	<u>SC-45</u>	<u>SC-45</u>	<u>SC-45</u>		
SC-47	Alternate Communications Path			<u>SC-47</u>		
SI-1	Policy and Procedures	SI-1	SI-1	SI-1		
SI-2	Flaw Remediation	SI-2	SI-2 (2)	SI-2 (2)		
SI-3	Malicious Code Protection	SI-3	SI-3	SI-3		
SI-4	System Monitoring	SI-4	SI-4 (2) (4) (5)	SI-4 (2) (4) (5) (10) (12) (14) (20) (22)		
SI-5	Security Alerts, Advisories, and Directives	SI-5	SI-5	SI-5 (1)		
SI-6	Security and Privacy Function Verification			SI-6		
SI-7	Software, Firmware, and Information Integrity		SI-7 (1) (7)	SI-7 (1) (2) (5) (7) (15)		
SI-8	Spam Protection		SI-8 (2)	SI-8 (2)		
SI-10	Information Input Validation		SI-10	SI-10		
SI-11	Error Handling		SI-11	SI-11		
SI-12	Information Handling and Retention	SI-12	SI-12	SI-12		
SI-13	Predictable Failure Prevention			<u>SI-13</u>		
SI-16	Memory Protection		SI-16	SI-16		
SI-17	Fail-Safe Procedures	<u>SI-17</u>	<u>SI-17</u>	<u>SI-17</u>		
SR-1	Policy and Procedures	SR-1	SR-1	SR-1		
SR-2	Supply Chain Risk Management Plan	SR-2 (1)	SR-2 (1)	SR-2 (1)		
SR-3	Supply Chain Controls and Processes	SR-3	SR-3	SR-3		
SR-5	Acquisition Strategies, Tools, and Methods	SR-5	SR-5 <u>(1)</u>	SR-5 <u>(1)</u>		
SR-6	Supplier Assessments and Reviews		SR-6	SR-6		
SR-8	Notification Agreements	SR-8	SR-8	SR-8		
SR-9	Tamper Resistance and Detection			SR-9 (1)		
SR-10	Inspection of Systems or Components	SR-10	SR-10	SR-10		
SR-11	Component Authenticity	SR-11 (1) (2)	SR-11 (1) (2)	SR-11 (1) (2)		
SR-12	Component Disposal	SR-12	SR-12	SR-12		

4811 **F.4 Tailoring Considerations**

4812 The OT overlay in this publication leverages the SP 800-53B control baselines accounting for the

4813 unique characteristics of OT systems, such as an increased need for availability, safety, and

4814 environmental/operating environment considerations. Additionally, OT systems vary widely in

4815 their architecture and technology selection. The SP 800-53B control baselines were tailored for

- these general considerations, including addition of controls relevant for OT environments. 4816 Organizations can use this overlay as a starting point and further tailor controls to meet specific 4817
- 4818 operational needs to address variability of OT systems.
- 4819 As organizations further tailor controls to meet their internal security requirements, limitations
- 4820 (e.g., technology, operational constraints, environmental considerations) may necessitate

selecting compensating controls. Compensating controls in the OT environment may be required 4821

4822 in situations where the OT cannot support certain controls or control enhancements, or the

4823 organization determines it is not advisable to implement controls or control enhancements due to

4824 potential adverse impacts to performance, safety, or reliability. Compensating controls are

4825 alternatives to a specific baseline control or enhancement that provide equivalent or comparable

4826 protection. For example, if controls or control enhancements require automated mechanisms

4827 which are not readily available, cost effective, or technically feasible in OT environments,

4828 compensating controls implemented through nonautomated mechanisms or procedures may be

4829 acceptable to meet the intent of the control.

4830 Compensating controls implemented in accordance with PL-11 from SP 800-53 Rev. 5 are not

4831 considered exceptions or waivers to the baseline controls; rather, they are alternative safeguards

and countermeasures employed within the OT environment that accomplish the intent of the 4832

4833 original controls that could not be effectively employed. See "Control Tailoring" in Section 3.3

4834 of SP 800-37 Rev. 2 [SP800-37r2].

4835 Using compensating controls may also include control enhancements that supplement the

4836 baseline. Using compensating controls typically involves a trade-off between additional risk and

4837 reduced functionality. Every use of compensating controls should involve a risk-based 4838 determination of how much residual risk to accept and how much functionality to reduce.

Additionally, when compensating controls are employed, organizations should document the

- 4839
- 4840 rationale describing:
- 4841 ■ why the baseline control could not be implemented;
- 4842 ■ how the compensating control(s) provide equivalent security capabilities for OT systems; and
- 4843 ■ the risk acceptance for any residual risk resulting from using the compensating control(s) instead of the baseline control. 4844
- 4845 Organizational decisions on the use of compensating controls are documented in the security 4846 plan for the OT.

4847 Controls that contain assignments (e.g., Assignment: organization-defined conditions or trigger 4848 events) may be tailored out of the baseline. This is equivalent to assigning a value of "none." The 4849 assignment may take on different values for different impact baselines.

4850 **F.5 OT Communication Protocols**

The unique network properties within OT may warrant specific attention when applying certain controls. Many of the controls in NIST SP 800-53 Rev. 5 that pertain to communication, devices, and interfaces implicitly assume the applicability of network routing or communication between network segments or zones. Some devices, or subsystems, used in OT may be configured or architected in a way that may create an exception to this assumption. As a result, controls for devices that communicate using standards and protocols that do not include network addressing generally require tailoring. An RS-232 (serial) interface is an example of a non-network

4858 addressable or routable communication method that is commonly employed in OT equipment.

4859 **F.6 Definitions**

4860 Terms used in this overlay are defined in the <u>CSRC glossary</u>.

4861 F.7 Detailed Overlay Control Specifications

4862 This overlay is based on NIST SP 800-53 Rev. 5, Security and Privacy Controls for Information 4863 Systems and Organizations [SP800-53r5], which provides a catalog of security and privacy controls, and NIST SP 800-53B, Control Baselines for Information Systems and Organizations 4864 [SP800-53B]. The controls are customizable and implemented as part of an organization-wide 4865 4866 process that manages security and privacy risk. The controls address a diverse set of security and privacy requirements across the federal government and critical infrastructure, and are derived 4867 from legislation, Executive Orders, policies, directives, regulations, standards, and 4868 4869 mission/business needs. The documents also describe how to develop specialized sets of 4870 controls, or overlays, tailored for specific types of missions/business functions, technologies, or environments of operation. Finally, the catalog controls address security from both a 4871 4872 functionality perspective (the strength of security and privacy functions and mechanisms 4873 provided) and an assurance perspective (the measures of confidence in the implemented 4874 capability). Addressing both functionality and assurance helps to ensure that component products 4875 and the systems built from those products using sound system and security engineering 4876 principles are sufficiently trustworthy.

4877 In preparation for selecting and specifying the appropriate controls for organizational systems 4878 and their respective environments of operation, organizations first determine the criticality and 4879 sensitivity of the information to be processed, stored, or transmitted by those systems. This 4880 process is known as security categorization. FIPS 199 [FIPS199] enables federal agencies to establish security categories for both information and information systems. Other documents, 4881 such as those produced by ISA and CNSS, also provide guidance for defining low, moderate, and 4882 4883 high levels of security based on impact. The security categories are based on the potential impact 4884 on an organization or on people (employees and/or the public) should certain events occur which jeopardize the information and systems needed by the organization to accomplish its assigned 4885 4886 mission, such as protecting its assets, fulfilling its legal responsibilities, maintaining its day-to-4887 day functions, and protecting individuals' safety, health, and life. Security categories are to be used in conjunction with vulnerability and threat information in assessing the risk to an 4888 4889 organization.

219

4890 This overlay provides OT Discussion for the controls and control enhancements prescribed for a 4891 system or an organization designed to protect the confidentiality, integrity, and availability of its 4892 data and to meet a set of defined security requirements. Discussions for all controls and control 4893 enhancements in SP 800-53 Rev. 5, Chapter 3 should be used in conjunction with the OT 4894 Discussions in this overlay. This overlay contains a tailoring of the control baselines; its 4895 specification may be more stringent or less stringent than the original control baseline 4896 specification. It can be applied to multiple systems. This overlay is high-level, applicable to all 4897 OT environments; it may be used as the basis for more specific overlays. Use cases for specific 4898 systems in specific environments may be separately published (e.g., as a NISTIR).

- Figure 22 uses the AU-4 control as an example of the format and content of the detailed overlaycontrol specifications.
- 4901 **O** Control number and title
- 4902 **Olumn** for control and control enhancement number
- 4903 S Column for control and control enhancement name
- 4904
 4905
 Columns for baselines. If the baselines have been supplemented, then SUPPLEMENTED appears.
- 4906 **G** A row for each control or control enhancement
- 4907 **G** Columns for LOW, MODERATE, and HIGH baselines
- 4908 Select" indicates the control is selected in NIST SP 800-53 Rev. 5. "<u>Add</u>" indicates the control is added to a baseline in the OT overlay. A blank cell indicates the control is not selected. "Remove" indicates the control is removed from the baseline.
- 4911 **3** The OT Discussion. If there is none, that is stated.
- 4912 **9** The control enhancement OT Discussion. If there is none, that is stated.
- 4913 **•** The rationale for changing the presence of a control or control enhancement in the baseline

1 AC-3 ACCESS ENFORCEMENT				
CNTL NO.	3 CONTROL NAME Control Enhancement Name	4 SUPPLEMENTED 6 CONTROL BASELINES		
		LOW	MOD	HIGH
SAC-3	Access Enforcement	Select	Select	7 Select
AC-3 (11)	ACCESS ENFORCEMENT RESTRICT ACCESS TO SPECIFIC INFORMATION TYPES			<u>Add</u>

OT Discussion: The organization ensures that access enforcement mechanisms do not adversely impact the operational performance of the OT. Example compensating controls include encapsulation. Policy for logical access control to non-addressable and non-routable system resources and the associated information is made explicit. Access control mechanisms include hardware, firmware, and software that control the device or have device access, such as device drivers and communications controllers. Physical access control may serve as a compensating control for logical access require access to different functions.

• <u>Control Enhancement:</u> (11) <u>OT Discussion:</u> The organization identifies and restricts access to information that could impact the OT environment, accounting for information types that are sensitive, proprietary, contain trade secrets, or support safety functions.

O <u>Rationale for adding AC-3</u> (11) <u>to HIGH baseline</u>: The loss of availability, integrity, and confidentiality of certain types of information residing on a high-impact OT system may result in severe or catastrophic adverse effects on operations, assets, or individuals that include severe degradation or loss of mission capability, major damage to organizational assets, or result in harm to individuals involving loss of life or life-threatening injuries.

4915

Figure 22: Detailed Overlay Control Specifications Illustrated

4916 **F.7.1 ACCESS CONTROL – AC**

4917 Tailoring Considerations for the Access Control Family

4918 Before implementing controls in the AC family, consider the tradeoffs among security, privacy,

- 4919 latency, performance, throughput, and reliability. For example, the organization considers
- 4920 whether latency induced from the use of confidentiality and integrity mechanisms employing
- 4921 cryptographic mechanisms would adversely impact the operational performance of the OT.
- 4922 In situations where the OT cannot support the specific Access Control requirements of a control,
- 4923 the organization employs compensating controls in accordance with the general tailoring
- 4924 guidance. Examples of compensating controls are given with each control, as appropriate.

4925 AC-1 ACCESS CONTROL POLICY AND PROCEDURES

	CONTROL NAME	CON	TROL BASEL	INES	
	NO.	Control Enhancement Name	LOW MOD HIGH		HIGH
	AC-1	Policy and Procedures	Select	Select	Select

4926 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT
4927 and the relationship to non-OT systems. OT access by vendors and maintenance staff can occur
4928 over a very large facility footprint or geographic area and into unobserved spaces such as
4929 mechanical/electrical rooms, ceilings, floors, field substations, switch and valve vaults, and
4930 pump stations.

4931 AC-2 ACCOUNT MANAGEMENT

CNTL		CONTROL BASELINES		
NO.		LOW	MOD	HIGH
AC-2	Account Management	Select	Select	Select
AC-2 (1)	ACCOUNT MANAGEMENT AUTOMATED SYSTEM ACCOUNT MANAGEMENT		Select	Select
AC-2 (2)	ACCOUNT MANAGEMENT AUTOMATED TEMPORARY AND EMERGENCY ACCOUNT MANAGEMENT		Select	Select
AC-2 (3)	ACCOUNT MANAGEMENT DISABLE ACCOUNTS		Select	Select
AC-2 (4)	ACCOUNT MANAGEMENT AUTOMATED AUDIT ACTIONS		Select	Select
AC-2 (5)	ACCOUNT MANAGEMENT INACTIVITY LOGOUT		Select	Select
AC-2 (11)	ACCOUNT MANAGEMENT USAGE CONDITIONS			Select
AC-2 (12)	ACCOUNT MANAGEMENT ACCOUNT MONITORING FOR ATYPICAL USAGE			Select
AC-2 (13)	ACCOUNT MANAGEMENT DISABLE ACCOUNTS FOR HIGH-RISK INDIVIDUALS		Select	Select

4932 <u>OT Discussion:</u> In OT systems, physical security, personnel security, intrusion detection, or

- 4933 auditing measures may assist in supporting this control objective.
- 4934 <u>Control Enhancement:</u> (1) (3) (4) No OT Discussion for this control.
- 4935 <u>Control Enhancement: (2) OT Discussion:</u> In situations where the OT (e.g., field devices) cannot
- 4936 support temporary or emergency accounts, this enhancement does not apply. Example
- 4937 compensating controls include employing nonautomated mechanisms or procedures.
- 4938 <u>Control Enhancement:</u> (5) OT Discussion: This control enhancement defines situations or
- 4939 timeframes in which users log out of accounts in policy; automatic enforcement is not addressed
- 4940 by this control enhancement. Organizations determine if this control enhancement is appropriate

- 4941 for the mission and/or functions of the OT system and define the timeframe or scenarios. If no
- 4942 timeframe or scenario(s) apply, the organization-defined parameter reflects as such.
- 4943 <u>Control Enhancement:</u> (11) (12) No OT Discussion for this control.
- 4944 <u>Control Enhancement:</u> (13) <u>OT Discussion:</u> Close coordination occurs between OT, Human
- 4945 Resources (HR), IT, and Physical Security personnel to ensure the timely removal of high-risk
- 4946 individuals.

4947 AC-3 ACCESS ENFORCEMENT

CNTL	CONTROL NAME Control Enhancement Name	SUPPLEMENTED CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
AC-3	Access Enforcement	Select	Select	Select	
AC-3 (11)	ACCESS ENFORCEMENT RESTRICT ACCESS TO SPECIFIC INFORMATION TYPES			Add	

- 4948 <u>OT Discussion:</u> The organization ensures that access enforcement mechanisms do not adversely
- 4949 impact the operational performance of the OT. Example compensating controls include
- 4950 encapsulation. Policy for logical access control to non-addressable and non-routable system
- 4951 resources and the associated information is made explicit. Access control mechanisms include
- 4952 hardware, firmware, and software that control the device or have device access, such as device
- 4953 drivers and communications controllers. Physical access control may serve as a compensating
- 4954 control for logical access control; however, it may not provide sufficient granularity in situations
- 4955 where users require access to different functions.
- 4956 <u>Control Enhancement: (11) OT Discussion:</u> The organization identifies and restricts access to
 4957 information that could impact the OT environment, accounting for information types that are
 4958 sensitive, proprietary, contain trade secrets, or support safety functions.
- 4959 <u>Rationale for adding AC-3 (11) to HIGH baseline:</u> The loss of availability, integrity, and
- 4960 confidentiality of certain types of information residing on a high-impact OT system may result in
- 4961 severe or catastrophic adverse effects on operations, assets, or individuals that include severe
- 4962 degradation or loss of mission capability, major damage to organizational assets, or result in
- 4963 harm to individuals involving loss of life or life-threatening injuries.

4964AC-4INFORMATION FLOW ENFORCEMENT

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
AC-4	Information Flow Enforcement		Select	Select	
AC-4 (4)	INFORMATION FLOW ENFORCEMENT FLOW CONTROL OF ENCRYPTED INFORMATION			Select	

- 4965 <u>OT Discussion:</u> Information flow policy may be achieved using a combination of logical and
- 4966 physical flow restriction techniques. Inspection of message content may enforce information
- 4967 flow policy. For example, industrial OT protocols may be restricted using inbound and outbound
- 4968 traffic rules on a network control device between OT and IT networks. For non-routable
- 4969 communication such as serial connections, devices may be configured to limit commands to and
- 4970 from specific tags within the OT device. Information flow policy may be supported by labeling
- 4971 or coloring physical connectors to aid in connecting networks. Devices that do not have a
- 4972 business need to communicate should not be connected (i.e., air gapped).
- 4973 <u>Control Enhancement:</u> (4) No OT discussion for this control.

4974AC-5SEPARATION OF DUTIES

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
AC-5	Separation of Duties		Select	Select

4975 <u>OT Discussion:</u> Example compensating controls include providing increased personnel security

4976 and auditing. The organization carefully considers the appropriateness of a single individual

4977 performing multiple critical roles.

4978 AC-6 LEAST PRIVILEGE

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
AC-6	Least Privilege		Select	Select
AC-6 (1)	LEAST PRIVILEGE AUTHORIZE ACCESS TO SECURITY FUNCTIONS		Select	Select
AC-6 (2)	LEAST PRIVILEGE NON-PRIVILEGED ACCESS FOR NONSECURITY FUNCTIONS		Select	Select
AC-6 (3)	LEAST PRIVILEGE NETWORK ACCESS TO PRIVILEGED COMMANDS			Select
AC-6 (5)	LEAST PRIVILEGE PRIVILEGED ACCOUNTS		Select	Select
AC-6 (7)	LEAST PRIVILEGE REVIEW OF USER PRIVILEGES		Select	Select
AC-6 (9)	LEAST PRIVILEGE LOG USE OF PRIVILEGED FUNCTIONS		Select	Select
AC-6 (10)	LEAST PRIVILEGE PROHIBIT NON-PRIVILEGED USERS FROM EXECUTING PRIVILEGED FUNCTIONS		Select	Select

4979 <u>OT Discussion:</u> Example compensating controls include providing increased personnel security

4980 and auditing. The organization carefully considers the appropriateness of a single individual

4981 having multiple critical privileges. System privilege models may be tailored to enforce integrity

and availability (e.g., lower privileges include read access and higher privileges include write

4983 access).

- 4984 <u>Control Enhancement:</u> (1) (2) (3) (5) (9) <u>OT Discussion</u>: In situations where the OT components
- 4985 (e.g., PLCs) cannot support logging of privileged functions, other system components within the
- 4986 authorization boundary may be used (e.g., engineering workstations or physical access4987 monitoring).
- 4988 <u>Control Enhancement:</u> (7) No OT Discussion for this control.
- 4989 <u>Control Enhancement:</u> (10) <u>OT Discussion</u>: Example compensating controls include enhanced
 4990 auditing.

4991 AC-7 UNSUCCESSFUL LOGON ATTEMPTS

CNTL	- CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
AC-7	Unsuccessful Logon Attempts	Select	Select	Select

4992 <u>OT Discussion</u>: Many OT systems remain in continuous operation and operators remain logged 4993 onto the system at all times. A "log-over" capability may be employed. Example compensating 4994 controls include logging or recording all unsuccessful login attempts and alerting OT security 4995 personnel through alarms or other means when the number of organization-defined consecutive 4996 invalid access attempts is exceeded. Unsuccessful logon attempt limits are enforced for accounts 4997 (e.g., administrator) or systems (e.g., engineering workstations) not required for continuous 4998 operation.

4999 AC-8 SYSTEM USE NOTIFICATION

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	AC-8	System Use Notification	Select	Select	Select

5000 OT Discussion: Many OT systems must remain in continuous operation and system use

5001 notification may not be supported or effective. Example compensating controls include posting

5002 physical notices in OT facilities or providing recurring training on system use prior to permitting

5003 access.

5004 AC-10 CONCURRENT SESSION CONTROL

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
AC-10	Concurrent Session Control			Select	

5005 <u>OT Discussion</u>: The number, account type, and privileges of concurrent sessions considers the 5006 roles and responsibilities of the affected individuals. Example compensating controls include

5007 providing increased auditing measures.

5008 AC-11 DEVICE LOCK

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
AC-11	Device Lock		Select	Select	
AC-11 (1)	DEVICE LOCK PATTERN-HIDING DISPLAYS		Select	Select	

- 5009 <u>OT Discussion</u>: This control assumes a staffed environment where users interact with system
- 5010 displays. This control may be tailored appropriately where systems do not have displays
- 5011 configured, systems are placed in an access-controlled facility or locked enclosure, or immediate
- 5012 operator response is required in emergency situations. Example compensating controls include
- 5013 locating the display in an area with physical access controls that limit access to individuals with
- 5014 permission and need-to-know for the displayed information.
- 5015 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Physical protection may be employed to prevent
- 5016 access to a display or prevent attachment of a display. In situations where the OT cannot conceal
- 5017 displayed information, the organization employs nonautomated mechanisms or procedures as
- 5018 compensating controls in accordance with the general tailoring guidance.

5019 AC-12 SESSION TERMINATION

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
AC-12	Session Termination		Select	Select	

5020 <u>OT Discussion:</u> Example compensating controls include providing increased auditing measures 5021 or limiting remote access privileges to key personnel.

5022 AC-14 PERMITTED ACTIONS WITHOUT IDENTIFICATION OR AUTHENTICATION

CNTL		CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
AC-14	Permitted Actions without Identification or Authentication	Select	Select	Select

5023 No OT Discussion for this control.

5024 **AC-17 REMOTE ACCESS**

CNTL	CONTROL NAME	-		
NO.	Control Enhancement Name	LOW	MOD	HIGH
AC-17	Remote Access	Select	Select	Select
AC-17 (1)	REMOTE ACCESS AUTOMATED MONITORING / CONTROL		Select	Select
AC-17 (2)	REMOTE ACCESS PROTECTION OF CONFIDENTIALITY / INTEGRITY USING ENCRYPTION		Select	Select
AC-17 (3)	REMOTE ACCESS MANAGED ACCESS CONTROL POINTS		Select	Select
AC-17 (4)	REMOTE ACCESS PRIVILEGED COMMANDS / ACCESS		Select	Select
AC-17 (9)	REMOTE ACCESS DISCONNECT OR DISABLE ACCESS	Add	Add	Add
AC-17 (10)	REMOTE ACCESS AUTHENTICATE REMOTE COMMANDS		<u>Add</u>	Add

5025 <u>OT Discussion</u>: In situations where the OT cannot implement any or all of the components of this

5026 control, the organization employs other mechanisms or procedures as compensating controls in

5027 accordance with the general tailoring guidance.

5028 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Example compensating controls include employing

5029 nonautomated mechanisms or procedures as compensating controls. Compensating controls

5030 could include limiting remote access to a specified period of time or placing a call from the OT

5031 site to the authenticated remote entity.

5032 <u>Control Enhancement:</u> (2) <u>OT Discussion:</u> Encryption-based technologies should be used to

5033 support the confidentiality and integrity of remote access sessions. While OT devices often lack

the ability to support modern encryption, additional devices (e.g., VPNs) can be added to support

5035 these features. This control should not be confused with SC-8 – Transmission Confidentiality

- and Integrity, which discusses confidentiality and integrity requirements for general
- 5037 communications, including between OT devices.
- 5038 <u>Control Enhancement:</u> (3) <u>OT Discussion:</u> Example compensating controls include connection-5039 specific manual authentication of the remote entity.
- 5040 <u>Control Enhancement:</u> (4) (10) No OT Discussion for this control.
- 5041 <u>Control Enhancement:</u> (9) <u>OT Discussion:</u> Implementation of the remote access disconnect
- 5042 should not impact OT operations. OT personnel should be trained on how to use the remote 5043 access disconnect.
- 5044 <u>Rationale for adding AC-17 (9) to LOW, MOD and HIGH baselines:</u> As more OT systems
- 5045 become accessible remotely, the capability to disconnect or disable remote access is critical to
- 5046 manage risk. Disconnect of remote access may be required to provide stable and safe operations.

- 5047 <u>Rationale for adding AC-17 (10) to MOD and HIGH baselines:</u> The ability to authenticate remote
- 5048 commands is important to prevent unauthorized commands that may have immediate or serious
- 5049 consequences such as injury, death, property damage, loss of high-value assets, failure of
- 5050 mission or business functions, or compromise of sensitive information.

5051 AC-18 WIRELESS ACCESS

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
AC-18	Wireless Access	Select	Select	Select
AC-18 (1)	WIRELESS ACCESS AUTHENTICATION AND ENCRYPTION		Select	Select
AC-18 (3)	WIRELESS ACCESS DISABLE WIRELESS NETWORKING		Select	Select
AC-18 (4)	WIRELESS ACCESS RESTRICT CONFIGURATIONS BY USERS			Select
AC-18 (5)	WIRELESS ACCESS ANTENNAS AND TRANSMISSION POWER LEVELS			Select

- 5052 <u>OT Discussion:</u> In situations where OT cannot implement any or all of the components of this
- 5052 <u>OT Discussion</u>. In situations where OT cannot implement any of an of the components of this 5053 control, the organization employs other mechanisms or procedures as compensating controls in
- 5054 accordance with the general tailoring guidance.
- 5055 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Implementation of authentication and encryption is
- 5056 driven by the OT environment. There are some scenarios where devices and users cannot all be
- 5057 authenticated and encrypted due to operational or technology constraints. In such scenarios,
- 5058 compensating controls include providing increased auditing for wireless access, limiting wireless
- 5059 access privileges to key personnel, or using AC-18 (5) to reduce the boundary of wireless access.
- 5060 <u>Control Enhancement:</u> (3) (4) No OT Discussion for this control.
- 5061 <u>Control Enhancement:</u> (5) Availability and interference for wireless signals may be a concern
- 5062 within OT environments. Antennas and power levels should be designed to overcome and
- achieve availability goals. Where confidentiality is concerned, antennas and power levels can
- also be designed to minimize signal exposure outside of the facility.

5065 AC-19 ACCESS CONTROL FOR MOBILE DEVICES

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
AC-19	Access Control for Mobile Devices	Select	Select	Select
AC-19 (5)	ACCESS CONTROL FOR MOBILE DEVICES FULL DEVICE / CONTAINER-BASED ENCRYPTION		Select	Select

5066 No OT Discussion for this control.

5067 AC-20 USE OF EXTERNAL SYSTEMS

CNTL	CONTROL NAME	CON	CONTROL BASELINES		
NO.		LOW	MOD	HIGH	
AC-20	Use of External Systems	Select	Select	Select	
AC-20 (1)	USE OF EXTERNAL SYSTEMS LIMITS ON AUTHORIZED USE		Select	Select	
AC-20 (2)	USE OF EXTERNAL SYSTEMS PORTABLE STORAGE MEDIA		Select	Select	

5068 <u>OT Discussion:</u> Organizations refine the definition of "external" to reflect lines of authority and

5069 responsibility; granularity of organization entity; and their relationships. An organization may 5070 consider a system to be external if that system performs different functions, implements different

5071 policies, falls under different management authorities, or does not provide sufficient visibility

5071 poncies, rans under different management authorntes, or does not provide sufficient visionity 5072 into the implementation of controls to allow the establishment of a satisfactory trust relationship.

5072 For example, an OT system and a business data processing system may be considered external to

5075 For example, an OT system and a business data processing system may be consider 5074 each other depending on the organization's system boundaries.

5075 Access to an OT for support by a business partner, such as a vendor or support contractor, is

another common example. The definition and trustworthiness of external systems is reexamined

5077 with respect to OT functions, purposes, technology, and limitations to establish a clearly

5078 documented technical or business case for use and an acceptance of the risk inherent in the use of

5079 an external system.

5080 <u>Control Enhancement:</u> (1) (2) No OT Discussion for this control.

5081 AC-21 INFORMATION SHARING

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD HIGH	HIGH
AC-21	Information Sharing		Select	Select

5082 No OT Discussion for this control.

5083 AC-22 PUBLICLY ACCESSIBLE CONTENT

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW MOD H	HIGH	
AC-22	Publicly Accessible Content	Select	Select	Select

5084 <u>OT Discussion:</u> Generally, public access to OT systems is not permitted. Select information may

5085 be transferred to a publicly accessible system, possibly with added controls. The organization

5086 should review what information is being made accessible prior to publication.

5087 F.7.2 AWARENESS AND TRAINING – AT

5088 AT-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD HIGH	HIGH
AT-1	Policy and Procedures	Select	Select	Select

5089 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5090 and the relationship to non-OT systems.

5091 AT-2 LITERACY TRAINING AND AWARENESS

CNTL	CONTROL NAME	-	UPPLEMENTED ITROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
AT-2	Literacy Training and Awareness	Select	Select	Select	
AT-2 (2)	LITERACY TRAINING AND AWARENESS INSIDER THREAT	Select	Select	Select	
AT-2 (3)	LITERACY TRAINING AND AWARENESS SOCIAL ENGINEERING AND MINING		Select	Select	
AT-2 (4)	LITERACY TRAINING AND AWARENESS SUSPICIOUS COMMUNICATIONS AND ANOMALOUS SYSTEM BEHAVIOR		Add	Add	

5092 OT Discussion: Security awareness training includes initial and periodic review of OT-specific

5093 policies, standard operating procedures, security trends, and vulnerabilities. The OT security

5094 awareness program is consistent with the requirements of the security awareness and training

5095 policy established by the organization.

5096 <u>Control Enhancement:</u> (2) (3) No OT Discussion for this control.

5097 <u>Control Enhancement:</u> (4) <u>OT Discussion:</u> Identify and communicate suspicious and anomalous

5098 behaviors within the OT environment. Some examples of OT suspicious or anomalous behavior

5099 may include a PLC still in programming mode when it is expected to be in run mode, process

5100 trips with undetermined root cause, malware on an HMI, unexpected mouse movement, or

- 5101 process changes that are not being performed by the operator.
- 5102 <u>Rationale for adding AT-2 (4) to MOD and HIGH baselines:</u> Training OT personnel on
- 5103 potentially suspicious communications/anomalous behaviors, and actions to take if anomalous
- 5104 system behavior occurs, can supplement system detection and protection mechanisms for
- 5105 improved response.

5106 AT-3 ROLE-BASED TRAINING

	CNTL	CONTROL NAME	CON	TROL BASEL	INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	AT-3	Role-Based Training	Select	Select	Select

5107 OT Discussion: Security training includes initial and periodic review of OT-specific policies,

5108 standard operating procedures, security trends, and vulnerabilities. The OT security training

5109 program is consistent with the requirements of the security awareness and training policy

5110 established by the organization. The training may be customized for specific OT roles, which

5111 could include operators, maintainers, engineers, supervisors, and administrators.

5112 AT-4 TRAINING RECORDS

CN	CNTL	CONTROL NAME	CONTROL BASELINES		
	NO.	Control Enhancement Name	LOW	MOD	LINES HIGH Select
	AT-4	Training Records	Select	Select	Select

5113 No OT Discussion for this control.

5114 F.7.3 AUDITING AND ACCOUNTABILITY – AU

5115 **Tailoring Considerations for the Audit Family**

5116 In general, security audit information and audit tools are not available on legacy OT. In

5117 situations where OT cannot support the specific audit and accountability requirements of a

5118 control, the organization employs compensating controls in accordance with the general tailoring

5119 guidance. For example, organizations may want to consider if security audit information is

5120 available from separate systems or system components (e.g., the historian, firewall logs, physical

- 5121 security systems). Additional examples of compensating controls are given with each control as
- 5122 appropriate.

5123 AU-1 AUDIT AND ACCOUNTABILITY POLICY AND PROCEDURES

	CNTL	CONTROL NAME	CON	TROL BASEL	INES
	NO.	Control Enhancement Name	LOW MOD HI	HIGH	
	AU-1	Policy and Procedures	Select	Select	Select

5124 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT

5125 and the relationship to non-OT systems.
5126 AU-2 EVENT LOGGING

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	AU-2	Event Logging	Select	Select	Select

5127 <u>OT Discussion</u>: Organizations may want to include relevant OT events (e.g., alerts, alarms,

- 5128 configuration and status changes, operator actions) in their event logging, which may be
- 5129 designated as audit events.

5130 AU-3 CONTENT OF AUDIT RECORDS

CNTL	CONTROL NAME		CONTROL BASELINES			
NO.	· Control Enhancement Name	LOW	MOD	HIGH		
AU-3	Content of Audit Records	Select	Select	Select		
AU-3 (1)	CONTENT OF AUDIT RECORDS ADDITIONAL AUDIT INFORMATION		Select	Select		

5131 No OT Discussion for this control.

5132 AU-4 AUDIT LOG STORAGE CAPACITY

CNTL	CONTROL NAME Control Enhancement Name	SUPPLEMENTED CONTROL BASELINES		
NO.		LOW	MOD	HIGH
AU-4	Audit Log Storage Capacity	Select	Select	Select
AU-4 (1)	AUDIT LOG STORAGE CAPACITY TRANSFER TO ALTERNATE STORAGE	<u>Add</u>	<u>Add</u>	Add

5133 No OT Discussion for this control.

5134 <u>Rationale for adding AU-4 (1) to LOW, MOD and HIGH baselines:</u> Organizational requirements

5135 may require storage of very large amounts of data, which OT components may not be able to

5136 support directly.

5137 AU-5 RESPONSE TO AUDIT LOGGING PROCESS FAILURES

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
AU-5	Response to Audit Logging Process Failures	Select	Select	Select	
AU-5 (1)	RESPONSE TO AUDIT LOGGING PROCESS FAILURES AUDIT STORAGE CAPACITY			Select	
AU-5 (2)	RESPONSE TO AUDIT LOGGING PROCESS FAILURES REAL-TIME ALERTS			Select	

5138 No OT Discussion for this control.

5139 AU-6 AUDIT RECORD REVIEW, ANALYSIS, AND REPORTING

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
AU-6	Audit Review, Analysis, and Reporting	Select	Select	Select	
AU-6 (1)	AUDIT RECORD REVIEW, ANALYSIS, AND REPORTING AUTOMATED PROCESS		Select	Select	
AU-6 (3)	AUDIT RECORD REVIEW, ANALYSIS, AND REPORTING CORRELATE AUDIT RECORD REPOSITORIES		Select	Select	
AU-6 (5)	AUDIT RECORD REVIEW, ANALYSIS, AND REPORTING INTEGRATED ANALYSIS OF AUDIT RECORDS			Select	
AU-6 (6)	AUDIT RECORD REVIEW, ANALYSIS, AND REPORTING CORRELATION WITH PHYSICAL MONITORING			Select	

- 5140 No OT Discussion for this control.
- 5141 <u>Control Enhancement: (1) OT Discussion:</u> Example compensating controls include manual
- 5142 mechanisms or procedures. For devices where audit records cannot be feasibly collected,
- 5143 periodic manual review may be necessary.
- 5144 <u>Control Enhancement:</u> (3) (5) (6) No OT Discussion for this control.

5145 AU-7 AUDIT RECORD REDUCTION AND REPORT GENERATION

CNTL		CONTROL NAME	CON	TROL BASEL	INES
NO.		LOW	MOD	HIGH	
AU-7	Audit Record Reduction and Report Generation		Select	Select	
AU-7 (1)	AUDIT RECORD REDUCTION AND REPORT GENERATION AUTOMATIC PROCESSING		Select	Select	

5146 No OT Discussion for this control.

5147 **AU-8 TIME STAMPS**

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
AU-8	Time Stamps	Select	Select	Select

5148 <u>OT Discussion:</u> Example compensating controls include using a separate system designated as an

authoritative time source. See related control SC-45.

5150 AU-9 PROTECTION OF AUDIT INFORMATION

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
AU-9	Protection of Audit Information	Select	Select	Select
AU-9 (2)	PROTECTION OF AUDIT INFORMATION STORE ON SEPARATE PHYSICAL SYSTEMS OR COMPONENTS			Select
AU-9 (3)	PROTECTION OF AUDIT INFORMATION CRYPTOGRAPHIC PROTECTION			Select
AU-9 (4)	PROTECTION OF AUDIT INFORMATION ACCESS BY SUBSET OF PRIVILEGED USERS		Select	Select

5151 No OT Discussion for this control.

5152 AU-10 NON-REPUDIATION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
AU-10	Non-Repudiation			Select

5153 OT Discussion: OT devices may not enforce non-repudiation of audit records and may require

5154 compensating controls. Example compensating controls include physical security systems,

5155 cameras to monitor user access, or a separate device for log collection.

5156 AU-11 AUDIT RECORD RETENTION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
AU-11	Audit Record Retention	Select	Select	Select

5157 No OT Discussion for this control.

5158 AU-12 AUDIT RECORD GENERATION

CNTL		CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
AU-12	Audit Record Generation	Select	Select	Select	
AU-12 (1)	AUDIT RECORD GENERATION SYSTEM-WIDE AND TIME-CORRELATED AUDIT TRAIL			Select	
AU-12 (3)	AUDIT RECORD GENERATION CHANGES BY AUTHORIZED INDIVIDUALS			Select	

- 5160 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Example compensating controls include providing 5161 time-correlated audit records on a separate system.
- 5162 <u>Control Enhancement:</u> (3) <u>OT Discussion:</u> Example compensating controls include employing nonautomated mechanisms or procedures.

5164 F.7.4 ASSESSMENT, AUTHORIZATION, AND MONITORING – CA

5165 **Tailoring Considerations for the Security Assessment and Authorization Family**

- 5166 In situations where the OT cannot support specific assessment, authorization, and monitoring
- 5167 requirements of a control, the organization employs compensating controls in accordance with
- the general tailoring guidance. Examples of compensating controls are given with each control as
- 5169 appropriate.

5170 CA-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
CA-1	Policy and Procedures	Select	Select	Select

5171 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT

and the relationship to non-OT systems.

5173 CA-2 CONTROL ASSESSMENTS

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
CA-2	Control Assessments	Select	Select	Select
CA-2 (1)	CONTROL ASSESSMENTS INDEPENDENT ASSESSORS		Select	Select
CA-2 (2)	CONTROL ASSESSMENTS SPECIALIZED ASSESSMENTS			Select

5174 OT Discussion: Assessments are performed and documented by qualified assessors (i.e.,

5175 experienced in assessing OT) authorized by the organization. The individual/group conducting

5176 the assessment fully understands the organizational information security policies and procedures,

5177 the OT security policies and procedures, and the specific health, safety, and environmental risks

5178 associated with a particular facility and/or process. The organization ensures that the assessment

5179 does not affect system operation or result in unintentional system modification. If assessment

5180 activities must be performed on the production OT, it may need to be taken off-line before an

assessment can be conducted, or the assessment should be scheduled to occur during planned OT

5182 outages whenever possible.

5183 <u>Control Enhancement:</u> (1) No OT Discussion on this control.

5184 <u>Control Enhancement:</u> (2) <u>OT Discussion:</u> The organization conducts risk analysis to support

5185 selection of an assessment target (e.g., the live system, an off-line replica or lab system).

5186 CA-3 INFORMATION EXCHANGE

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CA-3	Information Exchange	Select	Select	Select	
CA-3 (6)	INFORMATION EXCHANGE TRANSFER AUTHORIZATION			Select	

5187 <u>OT Discussion:</u> Organizations perform risk-benefit analysis to support determining whether an

- 5188 OT should be connected to other system(s). The authorizing official (AO) fully understands the
- 5189 organizational information security policies and procedures; the OT security policies and
- 5190 procedures; the risks to organizational operations and assets, individuals, other organizations,
- and the nation associated with the connection to other system(s); the individuals and
- 5192 organizations that operate and maintain the systems, including maintenance contractors or
- 5193 service providers; and the specific health, safety, and environmental risks associated with a
- 5194 particular interconnection. Connections from the OT environment to other security zones may
- 5195 cross the authorization boundary, such that two different authorizing officials may be required to
- 5196 approve the connection. Decisions to accept risk are documented.
- 5197 <u>Control Enhancement:</u> (6) No OT Discussion for this control.

5198 CA-5 PLAN OF ACTION AND MILESTONES

CNTL	CONTROL NAME		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CA-5	Plan of Action and Milestones	Select	Select	Select	

5199 <u>OT Discussion:</u> Corrective actions identified in assessments may not be immediately actionable

5200 in an OT environment; therefore, short-term mitigations may be implemented to reduce risk as

5201 part of the gap closure plan or plan of action and milestones.

5202 CA-6 AUTHORIZATION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
CA-6	Authorization	Select	Select	Select

5204 CA-7 **CONTINUOUS MONITORING**

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
CA-7	Continuous Monitoring	Select	Select	Select	
CA-7 (1)	CONTINUOUS MONITORING INDEPENDENT ASSESSMENT		Select	Select	
CA-7 (4)	CONTINUOUS MONITORING RISK MONITORING	Select	Select	Select	

5205 OT Discussion: Continuous monitoring programs for OT are designed, documented, and

5206 implemented with input from OT personnel. The organization ensures that continuous monitoring does not interfere with OT functions. The individual/group designing and conducting

5207 the continuous monitoring for the OT systems implements monitoring consistent with the

5208

5209 organizational information security policies and procedures, the OT security policies and

procedures, and the specific health, safety, and environmental risks associated with a particular 5210

facility and/or process. Continuous monitoring can be automated or manual at a frequency 5211

5212 sufficient to support risk-based decisions. For example, the organization may determine for

lower-risk, isolated systems to monitor event logs manually on a specified frequency less often 5213 5214 than for higher-risk, networked systems.

5215 Control Enhancement: (1) (4) No OT Discussion for this control.

5216 CA-8 PENETRATION TESTING

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CA-8	Penetration Testing			Select	
CA-8 (1)	PENETRATION TESTING INDEPENDENT PENETRATION TESTING AGENT OR TEAM			Remove	

5217 OT Discussion: Penetration testing is used with care on OT networks to ensure that OT functions

5218 are not adversely impacted by the testing process. In general, OT systems are highly sensitive to

timing constraints and have limited resources. Example compensating controls include 5219

5220 employing a replicated, virtualized, or simulated system to conduct penetration testing.

Production OT may need to be taken off-line before testing can be conducted. If OT systems are 5221

taken off-line for testing, tests are scheduled to occur during planned OT outages whenever 5222

5223 possible. If penetration testing is performed on non-OT networks, extra care is taken to ensure

5224 that tests do not propagate into the OT network.

5225 Rationale for removing CA-8 (1) from HIGH baseline: Specific expertise is necessary to conduct

effective penetration testing on OT systems; it may not be feasible to identify independent 5226

personnel with the appropriate skillset/knowledge to perform penetration testing on an OT 5227

5228 environment. While an independent penetration test agent/team is recommended, it may not be

feasible for all high-impact OT systems. 5229

5230 CA-9 INTERNAL SYSTEM CONNECTIONS

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
CA-9	Internal System Connections	Select	Select	Select	

5231 <u>OT Discussion:</u> Organizations perform risk-benefit analysis to determine whether OT equipment 5232 should be connected to other internal system components, then document these connections. The 5233 AO fully understands the potential risks associated with approving individual connections or

approving a class of components to be connected. As an example, the AO may broadly approve
 the connection of any sensors limited to 4 to 20 milliamp (mA) communication, while other
 connection types (e.g., serial or ethernet) require individual approval. Decisions to accept risk are

5237 documented.

5238 F.7.5 CONFIGURATION MANAGEMENT – CM

5239 Tailoring Considerations for the Configuration Management Family

5240 In situations where the OT cannot be configured to restrict the use of unnecessary functions or

5241 cannot support the use of automated mechanisms to implement configuration management

5242 functions, the organization employs nonautomated mechanisms or procedures as compensating

5243 controls in accordance with the general tailoring guidance. Examples of compensating controls

5244 are given with each control as appropriate.

5245 CM-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CM-1	Policy and Procedures	Select	Select	Select	

5246 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5247 and the relationship to non-OT systems.

5248 CM-2 BASELINE CONFIGURATION

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CM-2	Baseline Configuration	Select	Select	Select	
CM-2 (2)	BASELINE CONFIGURATION AUTOMATION SUPPORT FOR ACCURACY / CURRENCY		Select	Select	
CM-2 (3)	BASELINE CONFIGURATION RETENTION OF PREVIOUS CONFIGURATIONS		Select	Select	
CM-2 (7)	BASELINE CONFIGURATION CONFIGURE SYSTEMS, COMPONENTS, OR DEVICES FOR HIGH-RISK AREAS		Select	Select	

5249 No OT Discussion for this control.

5250 CM-3 CONFIGURATION CHANGE CONTROL

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CM-3	Configuration Change Control		Select	Select	
CM-3 (1)	CONFIGURATION CHANGE CONTROL AUTOMATED DOCUMENT / NOTIFICATION / PROHIBITION OF CHANGES			Select	
CM-3 (2)	CONFIGURATION CHANGE CONTROL TEST / VALIDATE / DOCUMENT CHANGES		Select	Select	
CM-3 (4)	CONFIGURATION CHANGE CONTROL SECURITY AND PRIVACY REPRESENTATIVES		Select	Select	
CM-3 (6)	CONFIGURATION CHANGE CONTROL CRYPTOGRAPHY MANAGEMENT			Select	
CM-3 (7)	CONFIGURATION CHANGE CONTROL REVIEW SYSTEM CHANGES				
CM-3 (8)	CONFIGURATION CHANGE CONTROL PREVENT OR RESTRICT CONFIGURATION CHANGES				

- 5251 <u>OT Discussion:</u> Configuration change control procedures should align with the organization's
- 5252 management of change practices.
- 5253 <u>Control Enhancement:</u> (1) (2) (4) (6): No OT Discussion for this control.

5254 <u>Control Enhancement:</u> (7) <u>OT Discussion:</u> The organization takes into consideration OT-specific

5255 requirements when determining frequency and/or circumstances for reviewing system changes.

5256 As an example, safety instrumented systems may be justified for review of system changes on a

5257 predetermined frequency to ensure that no inadvertent changes have been made to the logic

5258 solver portion of a safety instrumented function.

5259 <u>Control Enhancement:</u> (8) <u>OT Discussion:</u> The organization prevents or restricts configuration 5260 changes based on a risk determination that the system should not be modified without additional

5261 permission. For example, some PLCs have physical key switches that are used to place the PLC 5262 in a mode that allows for programming changes. Physical key switches can restrict configuration

5263 changes so that physical access is required to make a modification to the system.

5264	CM-4	IMPACT ANALYSES

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CM-4	Impact Analyses	Select	Select	Select	
CM-4 (1)	IMPACT ANALYSES SEPARATE TEST ENVIRONMENTS			Select	
CM-4 (2)	IMPACT ANALYSES VERIFICATION OF CONTROLS		Select	Select	

5265 <u>OT Discussion:</u> The organization considers OT safety and security interdependencies. OT

5266 security and safety personnel are included in change process management if the change to the

- 5267 system may have an impact on safety or security.
- 5268 <u>Control Enhancement:</u> (1) (2) No OT Discussion for this control.

5269 CM-5 ACCESS RESTRICTIONS FOR CHANGE

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.		LOW	MOD	HIGH
CM-5	Access Restrictions for Change	Select	Select	Select
CM-5 (1)	ACCESS RESTRICTIONS FOR CHANGE AUTOMATED ACCESS ENFORCEMENT / AUDITING			Select

5270 <u>OT Discussion:</u> Some OT devices allow for the configuration and use of mode change switches.

- 5271 Where available, these should be used to prevent unauthorized changes. As an example, many
- 5272 PLCs have key switches that allow the device to be placed in a programming mode or a running
- 5273 mode. Those PLCs should be placed in a running or remote mode to prevent unauthorized
- 5274 programming changes, and the key should be removed from the key switch and managed
- 5275 appropriately.
- 5276 <u>Control Enhancement:</u> (1) No OT Discussion for this control.

5277 CM-6 CONFIGURATION SETTINGS

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
CM-6	Configuration Settings	Select	Select	Select
CM-6 (1)	CONFIGURATION SETTINGS AUTOMATED CENTRAL MANAGEMENT / APPLICATION / VERIFICATION			Select
CM-6 (2)	CONFIGURATION SETTINGS RESPOND TO UNAUTHORIZED CHANGES			Select

5278 No OT Discussion for this control.

5279 CM-7 LEAST FUNCTIONALITY

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
СМ-7	Least Functionality	Select	Select	Select
CM-7 (1)	LEAST FUNCTIONALITY PERIODIC REVIEW		Select	Select
CM-7 (2)	LEAST FUNCTIONALITY PREVENT PROGRAM EXECUTION		Select	Select

CNTL	CONTROL NAME	CON	ITROL BASELI	ELINES	
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CM-7 (5)	LEAST FUNCTIONALITY AUTHORIZED SOFTWARE — ALLOW-BY-EXCEPTION		Select	Select	

5280 <u>OT Discussion:</u> The organization implements least functionality by allowing only specified

5281 functions, protocols, and/or services required for OT operations. For non-routable protocols such

5282 as serial communications, interrupts could be disabled or set points could be made read-only

5283 except for privileged users to limit functionality. Ports are part of the address space in network

- 5284 protocols and are often associated with specific protocols or functions. For routable protocols,
- 5285 ports can be disabled on many networking devices to limit functionality to the minimum required 5286 for operation.
- 5287 <u>Control Enhancement:</u> (1) (2) No OT Discussion.

5288 <u>Control Enhancement:</u> (5) <u>OT Discussion:</u> The set of applications that run in OT is relatively

5289 static, making allowlisting practical. DHS recommends <u>using application allowlisting for OT</u> 5290 equipment.

5291 CM-8 SYSTEM COMPONENT INVENTORY

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
CM-8	System Component Inventory	Select	Select	Select
CM-8 (1)	SYSTEM COMPONENT INVENTORY UPDATES DURING INSTALLATIONS / REMOVALS		Select	Select
CM-8 (2)	SYSTEM COMPONENT INVENTORY AUTOMATED MAINTENANCE			Select
CM-8 (3)	SYSTEM COMPONENT INVENTORY AUTOMATED UNAUTHORIZED COMPONENT DETECTION		Select	Select
CM-8 (4)	SYSTEM COMPONENT INVENTORY PROPERTY ACCOUNTABILITY INFORMATION			Select

5292 No OT Discussion for this control.

5293 CM-9 CONFIGURATION MANAGEMENT PLAN

	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH
СМ-9	Configuration Management Plan		Select	Select

5294 <u>OT Discussion</u>: Configuration management plans apply to internal and external (e.g.,

5295 contractors, integrators) resources responsible for device configuration.

5296 CM-10 SOFTWARE USAGE RESTRICTIONS

	CONTROL BASELINES			
no.	Control Enhancement Name	LOW	MOD	HIGH
СМ-10	Software Usage Restrictions	Select	Select	Select

5297 No OT Discussion for this control.

5298 CM-11 USER-INSTALLED SOFTWARE

	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH
CM-11	User-Installed Software	Select	Select	Select

5299 No OT Discussion for this control.

5300 CM-12 INFORMATION LOCATION

CNTL	CONTROL NAME	CON	NES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
CM-12	Information Location		Select	Select
CM-12 (1)	INFORMATION LOCATION AUTOMATED TOOLS TO SUPPORT INFORMATION LOCATION		Select	Select

5301 OT Discussion: Organizations identify specific information types or components to track where

5302 information is being processed and stored. Information to consider in the OT environment may

5303 include shared account passwords; PLC backup files; detailed network drawings; and risk

assessments that identify specific threats with the environment.

5305 <u>Control Enhancement:</u> (1) No OT Discussion for this control.

5306 F.7.6 CONTINGENCY PLANNING - CP

5307 Tailoring Considerations for the Contingency Planning Family

5308 OT systems often contain a physical component at a fixed location. Such components may not be

relocated logically. Some replacement components may not be readily available. Continuance of

5310 essential missions and business functions with little or no loss of operational continuity may not

be possible. In situations where the organization cannot provide necessary essential services,

support, or automated mechanisms during contingency operations, the organization provides

5313 nonautomated mechanisms or predetermined procedures as compensating controls in accordance

5314 with the general tailoring guidance. Examples of compensating controls are given with each

5315 control as appropriate.

5316 CP-1 POLICY AND PROCEDURES

	CNTL CONTROL NAME NO. Control Enhancement Name	CON	TROL BASEL	INES
NO.		LOW	MOD	HIGH
CP-1	Policy and Procedures	Select	Select	Select

5317 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5318 and the relationship to non-OT systems.

5319 CP-2 CONTINGENCY PLAN

CNTL	CONTROL NAME		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CP-2	Contingency Plan	Select	Select	Select	
CP-2 (1)	CONTINGENCY PLAN COORDINATE WITH RELATED PLANS		Select	Select	
CP-2 (2)	CONTINGENCY PLAN CAPACITY PLANNING			Select	
CP-2 (3)	CONTINGENCY PLAN RESUME MISSION AND BUSINESS FUNCTIONS		Select	Select	
CP-2 (5)	CONTINGENCY PLAN CONTINUE MISSION AND BUSINESS FUNCTIONS			Select	
CP-2 (8)	CONTINGENCY PLAN IDENTIFY CRITICAL ASSETS		Select	Select	

5320 OT Discussion: The organization defines contingency plans for categories of disruptions or

failures. In the case of a contingency, the OT equipment executes preprogrammed functions such

as alert the operator of the failure and then do nothing, alert the operator and then safely shut

5323 down the industrial process, or alert the operator and then maintain the last operational setting

5324 prior to failure. Contingency plans for widespread disruption may involve specialized

5325 organizations (e.g., FEMA, emergency services, regulatory authorities).

5326 <u>Control Enhancement:</u> (1) (2) (3) (5) (8) No OT Discussion for this control.

5327 CP-3 CONTINGENCY TRAINING

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
CP-3	Contingency Training	Select	Select	Select
CP-3 (1)	CONTINGENCY TRAINING SIMULATED EVENTS			Select

5329 CP-4 CONTINGENCY PLAN TESTING

CNTL	CONTROL NAME	CON	TROL BASELINES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
CP-4	Contingency Plan Testing	Select	Select	Select
CP-4 (1)	CONTINGENCY PLAN TESTING COORDINATE WITH RELATED PLANS		Select	Select
CP-4 (2)	CONTINGENCY PLAN TESTING ALTERNATE PROCESSING SITE			Select

5330 No OT Discussion for this control.

- 5331 <u>Control Enhancement:</u> (1) No OT Discussion for this control.
- 5332 <u>Control Enhancement:</u> (2) <u>OT Discussion:</u> Not all systems will have alternate processing sites as
- 5333 discussed in CP-7.

5334 CP-6 ALTERNATE STORAGE SITE

CNTL		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	LOW MOD	HIGH
CP-6	Alternate Storage Site		Select	Select
CP-6 (1)	ALTERNATE STORAGE SITE SEPARATION FROM PRIMARY SITE		Select	Select
CP-6 (2)	ALTERNATE STORAGE SITE RECOVERY TIME AND RECOVERY POINT OBJECTIVES			Select
CP-6 (3)	ALTERNATE STORAGE SITE ACCESSIBILITY		Select	Select

5335 No OT Discussion for this control.

5336 CP-7 ALTERNATE PROCESSING SITE

CNTL		CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CP-7	Alternate Processing Site		Select	Select	
CP-7 (1)	ALTERNATE PROCESSING SITE SEPARATION FROM PRIMARY SITE		Select	Select	
CP-7 (2)	ALTERNATE PROCESSING SITE ACCESSIBILITY		Select	Select	
CP-7 (3)	ALTERNATE PROCESSING SITE PRIORITY OF SERVICE		Select	Select	
CP-7 (4)	ALTERNATE PROCESSING SITE PREPARATION FOR USE			Select	

5337 <u>OT Discussion:</u> Many site-wide supervisory or optimization servers (i.e., Level 3 and above of

the Purdue model) can be supported from an alternative processing site. It is likely not feasible

- 5339 for control systems or field devices, such as sensors or final elements (i.e., Level 1 and 0 of the
- 5340 Purdue model), to be made available from an alternative processing site.
- 5341 <u>Control Enhancement:</u> (1) (2) (3) (4) No OT Discussion for this control.

5342 CP-8 TELECOMMUNICATIONS SERVICES

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
CP-8	Telecommunications Services		Select	Select
CP-8 (1)	TELECOMMUNICATIONS SERVICES PRIORITY OF SERVICE PROVISIONS		Select	Select
CP-8 (2)	TELECOMMUNICATIONS SERVICES SINGLE POINTS OF FAILURE		Select	Select
CP-8 (3)	TELECOMMUNICATIONS SERVICES SEPARATION OF PRIMARY AND ALTERNATE PROVIDERS			Select
CP-8 (4)	TELECOMMUNICATIONS SERVICES PROVIDER CONTINGENCY PLAN			Select

- 5343 <u>OT Discussion:</u> Quality of service factors for OT include latency and throughput.
- 5344 <u>Control Enhancement:</u> (1) (2) (3) (4) No OT Discussion for this control.

5345 **CP-9 SYSTEM BACKUP**

CNTL	CONTROL NAME	CON	INES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
CP-9	System Backup	Select	Select	Select
CP-9 (1)	SYSTEM BACKUP TESTING FOR RELIABILITY AND INTEGRITY		Select	Select
CP-9 (2)	SYSTEM BACKUP TEST RESTORATION USING SAMPLING			Select
CP-9 (3)	SYSTEM BACKUP SEPARATE STORAGE FOR CRITICAL INFORMATION			Select
CP-9 (5)	SYSTEM BACKUP TRANSFER TO ALTERNATE STORAGE SITE			Select
CP-9 (8)	SYSTEM BACKUP CRYPTOGRAPHIC PROTECTION		Select	Select

5346 No OT Discussion for this control.

5347 <u>Control Enhancement:</u> (1) (2) <u>OT Discussion:</u> Testing for reliability and integrity increases

5348 confidence that the system can be restored after an incident, and minimizes the impact associated

5349 with downtime and outages. The ability to test backups is often dependent on resources, such as

5350 the availability of spare devices and testing equipment, needed to appropriately represent the

environment. Testing backup and restoration on OT is often limited to systems with redundancy

or spare equipment; in certain cases, sampling will be limited to those redundant systems.

- 5353 Compensating controls may include alternative methods for testing backups such as hash or
- 5354 checksum validations.
- 5355 <u>Control Enhancement:</u> (3) (5) (8) No OT Discussion for this control.

5356 CP-10 SYSTEM RECOVERY AND RECONSTITUTION

CNTL			SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
CP-10	System Recovery and Reconstitution	Select	Select	Select	
CP-10 (2)	SYSTEM RECOVERY AND RECONSTITUTION TRANSACTION RECOVERY		Select	Select	
CP-10 (4)	SYSTEM RECOVERY AND RECONSTITUTION RESTORE WITHIN TIME PERIOD			Select	
CP-10 (6)	SYSTEM RECOVERY AND RECONSTITUTION COMPONENT PROTECTION		<u>Add</u>	<u>Add</u>	

5357 <u>OT Discussion:</u> Reconstitution of the OT includes consideration whether system state variables

should be restored to initial values or values before disruption (e.g., are valves restored to full

5359 open, full closed, or settings prior to disruption). Restoring system state variables may be

- disruptive to ongoing physical processes (e.g., valves initially closed may adversely affect system cooling)
- 5361 system cooling).
- 5362 <u>Control Enhancement:</u> (2) (4) No OT Discussion for this control.
- 5363 <u>Control Enhancement:</u> (6) <u>OT Discussion:</u> Organizations should consider recovery and

5364 reconstitution timeframes when storing spare equipment, including environmental hazards that

5365 could damage the equipment. Storage locations and environments should be chosen

- 5366 appropriately for the type of backup equipment.
- 5367 <u>Rationale for adding CP-10 (6) to MOD and HIGH baselines:</u> OT system components stored
- 5368 without protection against environmental threats and unauthorized physical or logical access can
- 5369 be susceptible to compromise or damage. Certain system components may include embedded
- 5370 electronics that must be protected from environmental hazards.

5371 **CP-12 SAFE MODE**

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
CP-12	Safe Mode	<u>Add</u>	<u>Add</u>	Add

- 5372 No OT Discussion for this control.
- 5373 <u>Rationale for adding CP-12 to LOW, MOD and HIGH baselines:</u> This control provides a
- 5374 framework for the organization to plan its policy and procedures for dealing with IT and OT

- 5375 conditions beyond its control in the environment of operations to minimize potential safety and
- 5376 environmental impacts.

5377 F.7.7 IDENTIFICATION AND AUTHENTICATION - IA

5378 Tailoring Considerations for the Identification and Authentication Family

- 5379 Before implementing controls in the IA family, consider the tradeoffs among security, privacy,
- 5380 latency, performance, and throughput. For example, the organization considers whether latency
- 5381 induced from the use of authentication mechanisms employing cryptographic mechanisms would
- adversely impact the operational performance of the OT.
- 5383 In situations where the OT cannot support the specific Identification and Authentication
- 5384 requirements of a control, the organization employs compensating controls in accordance with
- the general tailoring guidance. Examples of compensating controls are given with each control as
- 5386 appropriate.

5387 IA-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME			INES
NO.		LOW	MOD	HIGH
IA-1	Policy and Procedures	Select	Select	Select

5388 OT Discussion: The policy specifically addresses the unique properties and requirements of OT 5389 and the relationship to non-OT systems.

5390 IA-2 IDENTIFICATION AND AUTHENTICATION (ORGANIZATIONAL USERS)

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-2	Identification and Authentication (Organizational Users)	Select	Select	Select
IA-2 (1)	IDENTIFICATION AND AUTHENTICATION MULTI-FACTOR AUTHENTICATION TO PRIVILEGED ACCOUNTS	Select	Select	Select
IA-2 (2)	IDENTIFICATION AND AUTHENTICATION MULTI-FACTOR AUTHENTICATION TO NON-PRIVILEGED ACCOUNTS	Select	Select	Select
IA-2 (5)	IDENTIFICATION AND AUTHENTICATION INDIVIDUAL AUTHENTICATION WITH GROUP AUTHENTICATION			Select
IA-2 (8)	IDENTIFICATION AND AUTHENTICATION ACCESS TO ACCOUNTS - REPLAY RESISTANT	Select	Select	Select
IA-2 (12)	IDENTIFICATION AND AUTHENTICATION ACCEPTANCE OF PIV CREDENTIALS	Select	Select	Select

5391 OT Discussion: In cases where shared accounts are required, compensating controls include

5392 providing increased physical security, personnel security, and auditing measures. For certain OT,

5393 the capability for immediate operator interaction is critical. Local emergency actions for OT are

5394 not hampered by identification or authentication requirements. Access to these systems may be

5395 restricted by appropriate physical controls.

- 5396 <u>Control Enhancement:</u> (1) (2) <u>OT Discussion:</u> As a compensating control, physical access
- restrictions may sufficiently represent one authentication factor, provided the system is notremotely accessible.
- 5399 <u>Control Enhancement:</u> (5) <u>OT Discussion:</u> For local access, physical access controls and logging
- 5400 may be used as an alternative to individual authentication on an OT system. For remote access,
- 5401 the remote access authentication mechanism will be used to identify, permit, and log individual
- 5402 access before permitting use of shared accounts.
- 5403 <u>Control Enhancement:</u> (8) No OT Discussion for this control.
- 5404 <u>Control Enhancement: (12) OT Discussion:</u> The acceptance of PIV credentials is only required
- 5405 for federal organizations, as defined by OMB Memorandum M-19-17 [OMB-M1917]. Non-
- 5406 federal organizations should refer to IA-2 (1) (2) for guidance on multi-factor authentication
- 5407 credentials. Furthermore, many OT systems do not have the ability to accept PIV credentials and
- 5408 will require compensating controls.

5409 IA-3 DEVICE IDENTIFICATION AND AUTHENTICATION

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINI		
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-3	Device Identification and Authentication	<u>Add</u>	Select	Select
IA-3 (1)	DEVICE IDENTIFICATION AND AUTHENTICATION CRYPTOGRAPHIC BIDIRECTIONAL AUTHENTICATION			
IA-3 (4)	DEVICE IDENTIFICATION AND AUTHENTICATION DEVICE ATTESTATION			

- 5410 OT Discussion: OT devices often may not inherently support device authentication. If devices
- 5411 are local to one another, physical security measures that prevent unauthorized communication
- 5412 between devices can be used as compensating controls. For remote communication, additional
- 5413 hardware may be required to meet authentication requirements.
- 5414 <u>Control Enhancement:</u> (1) (4) <u>OT Discussion:</u> For OT systems that include IIoT devices, these 5415 enhancements may be needed to protect device-to-device communication.
- 5415 enhancements may be needed to protect device-to-device communication.
- 5416 <u>Rationale for adding IA-3 to LOW baseline:</u> Given the variety of OT devices and physical
- 5417 locations of OT devices, organizations may consider if types of OT devices that may be
- 5418 vulnerable to tampering or spoofing require unique identification and authentication, and for
- 5419 what types of connections.

5420 IA-4 IDENTIFIER MANAGEMENT

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-4	Identifier Management	Select	Select	Select

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-4 (4)	IDENTIFIER MANAGEMENT IDENTIFY USER STATUS		Select	Select

- 5421 No OT Discussion for this control.
- 5422 <u>Control Enhancement: (4) OT Discussion:</u> This control enhancement is typically implemented by
- 5423 the organization, rather than at the system level. However, to manage risk for certain OT

5424 environments, identifiers such as badges may have different markings to indicate the status of

5425 individuals such as contractors, foreign nationals, and non-organizational users.

5426 IA-5 AUTHENTICATOR MANAGEMENT

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
IA-5	Authenticator Management	Select	Select	Select	
IA-5 (1)	AUTHENTICATOR MANAGEMENT PASSWORD-BASED AUTHENTICATION	Select	Select	Select	
IA-5 (2)	AUTHENTICATOR MANAGEMENT PUBLIC KEY-BASED AUTHENTICATION		Select	Select	
IA-5 (6)	AUTHENTICATOR MANAGEMENT PROTECTION OF AUTHENTICATORS		Select	Select	

- 5427 <u>OT Discussion:</u> Example compensating controls include physical access control and
- 5428 encapsulating the OT to provide authentication external to the OT.

5429 <u>Control Enhancement:</u> (1) (2) (6) No OT Discussion for this control.

5430 IA-6 AUTHENTICATION FEEDBACK

	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
		LOW	MOD	HIGH	
	IA-6	Authentication Feedback	Select	Select	Select

5431 <u>OT Discussion</u>: This control assumes a visual interface that provides feedback of authentication

5432 information during the authentication process. When OT authentication uses an interface that

5433 does not support visual feedback (e.g., protocol-based authentication), this control may be

5434 tailored out.

5435 IA-7 CRYPTOGRAPHIC MODULE AUTHENTICATION

CNTL		CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	

	IA-7	Cryptographic Module Authentication	Select	Select	Select	
--	------	-------------------------------------	--------	--------	--------	--

5436 No OT Discussion for this control.

5437 IA-8 IDENTIFICATION AND AUTHENTICATION (NON-ORGANIZATIONAL USERS)

	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-8	Identification and Authentication (Non-Organizational Users)	Select	Select	Select
IA-8 (1)	IDENTIFICATION AND AUTHENTICATION (NON-ORGANIZATIONAL USERS) ACCEPTANCE OF PIV CREDENTIALS FROM OTHER AGENCIES	Select	Select	Select
IA-8 (2)	IDENTIFICATION AND AUTHENTICATION (NON-ORGANIZATIONAL USERS) ACCEPTANCE OF EXTERNAL AUTHENTICATORS	Select	Select	Select
IA-8 (4)	IDENTIFICATION AND AUTHENTICATION (NON-ORGANIZATIONAL USERS) USE OF DEFINED PROFILES	Select	Select	Select

5438 <u>OT Discussion</u>: The OT Discussion for IA-2, Identification and Authentication (Organizational
 5439 Users) is applicable for Non-Organizational Users.

5440 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Acceptance of PIV credentials is only required for

organizations that follow OMB Memorandum M-19-17 [OMB-M1917] (e.g., federal agencies and contractors).

5443 <u>Control Enhancement:</u> (2) (4) <u>OT Discussion:</u> Example compensating controls include

5444 implementing support external to the OT and multi-factor authentication.

5445 IA-11 RE-AUTHENTICATION

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
IA-11	Re-authentication	Select	Select	Select	

5446 No OT Discussion for this control.

5447 IA-12 IDENTITY PROOFING

CNTL	CONTROL NAME		UPPLEMENTE TROL BASEL	
NO.	Control Enhancement Name	LOW	MOD	HIGH
IA-12	Identity Proofing		Select	Select
IA-12 (1)	IDENTITY PROOFING SUPERVISOR AUTHORIZATION			<u>Add</u>
IA-12 (2)	IDENTITY PROOFING IDENTITY EVIDENCE		Select	Select
IA-12 (3)	IDENTITY PROOFING IDENTITY EVIDENCE VALIDATION AND VERIFICATION		Select	Select

CNTL			SUPPLEMENTED CONTROL BASELINES		
NO.	NO. Control Enhancement Name	LOW	MOD	HIGH	
IA-12 (4)	IDENTITY PROOFING IN-PERSON VALIDATION AND VERIFICATION			Select	
IA-12 (5)	IDENTITY PROOFING ADDRESS CONFIRMATION		Select	Select	

5448 <u>OT Discussion:</u> Identity proofing is likely performed by different departments within the

5449 organization. It is encouraged to leverage existing organizational systems (i.e., HR or IT

- 5450 processes) to perform this control.
- 5451 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Maintenance, Engineering, or third-party

5452 organizations may require OT access in order to support operations. The organization should

5453 determine the AO for proving identity prior to allowing access to the OT environment. Consider

- 5454 obtaining supervisor or sponsor authorization, where the sponsor may be someone within 5455 operations.
- 5456 <u>Control Enhancement:</u> (2) (3) (4) (5) <u>OT Discussion:</u> If the organization already performs these

5457 controls, it is recommended to leverage existing organizational processes. For example, Human

5458 Resources may provide a system for tracking identity evidence. OT does not need to develop an

- independent system for achieving this control. Rather, it is advised to leverage the existing
- 5460 processes developed by other departments within the organization.
- 5461 <u>Rationale for adding IA-12 (1) to HIGH baseline:</u> A supervisor or sponsor should be made aware
 5462 of any access an employee has to the OT environment, since unauthorized or accidental access
 5463 could create consequences to the physical process.

5464 F.7.8 INCIDENT RESPONSE - IR

5465 Tailoring Considerations for the Incident Response Family

5466 The automated mechanisms used to support the tracking of security incidents are typically not 5467 part of, or connected to, the OT.

5468 IR-1 POLICY AND PROCEDURES

CNTL NO.	CONTROL NAME	CONTROL BASELINES			
	NO.	Control Enhancement Name	LOW	MOD	HIGH
IR-1		Policy and Procedures	Select	Select	Select

5469 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT

5470 and the relationship to non-OT systems.

5471 IR-2 INCIDENT RESPONSE TRAINING

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
IR-2	Incident Response Training	Select	Select	Select	
IR-2 (1)	INCIDENT RESPONSE TRAINING SIMULATED EVENTS			Select	
IR-2 (2)	INCIDENT RESPONSE TRAINING AUTOMATED TRAINING ENVIRONMENTS			Select	

5472 No OT Discussion for this control.

5473 IR-3 INCIDENT RESPONSE TESTING

CNTL	CONTROL NAME		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
IR-3	Incident Response Testing		Select	Select	
IR-3 (2)	INCIDENT RESPONSE TESTING COORDINATION WITH RELATED PLANS		Select	Select	

5474 No OT Discussion for this control.

5475 IR-4 INCIDENT HANDLING

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
IR-4	Incident Handling	Select	Select	Select	
IR-4 (1)	INCIDENT HANDLING AUTOMATED INCIDENT HANDLING PROCESSES		Select	Select	
IR-4 (4)	INCIDENT HANDLING INFORMATION CORRELATION			Select	
IR-4 (11)	INCIDENT HANDLING INTEGRATED INCIDENT RESPONSE TEAM			Select	

5476 <u>OT Discussion</u>: As part of the incident handling capability, the organization coordinates with

5477 external vendors, integrators, or suppliers as necessary to ensure they have the capability to

5478 address events specific to embedded components and devices.

5479 <u>Control Enhancement:</u> (1) (4) (11) No OT Discussion for this control.

5480 IR-5 INCIDENT MONITORING

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
IR-5	Incident Monitoring	Select	Select	Select	
IR-5 (1)	INCIDENT MONITORING AUTOMATED TRACKING, DATA COLLECTION, AND ANALYSIS			Select	

5481 No OT Discussion for this control.

5482 IR-6 INCIDENT REPORTING

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
IR-6	Incident Reporting	Select	Select	Select	
IR-6 (1)	INCIDENT REPORTING AUTOMATED REPORTING		Select	Select	
IR-6 (3)	INCIDENT REPORTING SUPPLY CHAIN COORDINATION		Select	Select	

5483 <u>OT Discussion:</u> The organization should report incidents on a timely basis. CISA collaborates

5484 with international and private sector Computer Emergency Response Teams (CERTs) to share 5485 control systems-related security incidents and mitigation measures.

5486 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> The automated mechanisms used to support the 5487 incident reporting process are not necessarily part of, or connected to, the OT.

5488 <u>Control Enhancement:</u> (3) No OT Discussion for this control.

5489 IR-7 INCIDENT RESPONSE ASSISTANCE

CNTL	CONTROL NAME	CONTROL B		SELINES	
NO.	Control Enhancement Name	LOW	MOD	HIGH	
IR-7	Incident Response Assistance	Select	Select	Select	
IR-7 (1)	INCIDENT RESPONSE ASSISTANCE AUTOMATION SUPPORT FOR AVAILABILITY OF INFORMATION AND SUPPORT		Select	Select	

5490 No OT Discussion for this control.

5491 IR-8 INCIDENT RESPONSE PLAN

CNTL NO.	CONTROL NAME	CONTROL BASELINES	INES
	Control Enhancement Name	LOW	MOD

IR-8	Incident Response Plan	Select	Select	Select
------	------------------------	--------	--------	--------

5492 No OT Discussion for this control.

5493 **F.7.9 MAINTENANCE - MA**

5494 Tailoring Considerations for the Maintenance Family

- 5495 The automated mechanisms used to schedule, conduct, and document maintenance and repairs 5496 are not necessarily part of, or connected to, the OT.
- 5497 In situations where the OT cannot support the specific maintenance requirements of a control,
- 5498 the organization employs compensating controls in accordance with the general tailoring
- 5499 guidance. Examples of compensating controls are given with each control as appropriate.

5500 MA-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MA-1	Policy and Procedures	Select	Select	Select	

5501 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5502 and the relationship to non-OT systems.

5503 MA-2 CONTROLLED MAINTENANCE

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.		LOW	MOD	HIGH
MA-2	Controlled Maintenance	Select	Select	Select
MA-2 (2)	CONTROLLED MAINTENANCE AUTOMATED MAINTENANCE ACTIVITIES			Select

5504 No OT Discussion for this control.

5505 MA-3 MAINTENANCE TOOLS

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MA-3	Maintenance Tools		Select	Select	
MA-3 (1)	MAINTENANCE TOOLS INSPECT TOOLS		Select	Select	
MA-3 (2)	MAINTENANCE TOOLS INSPECT MEDIA		Select	Select	
MA-3 (3)	MAINTENANCE TOOLS PREVENT UNAUTHORIZED REMOVAL		Select	Select	

5506

5507 MA-4 NONLOCAL MAINTENANCE

CNTL	CONTROL NAME Control Enhancement Name	SUPPLEMENTED CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MA-4	Nonlocal Maintenance	Select	Select	Select	
MA-4 (1)	NONLOCAL MAINTENANCE LOGGING AND REVIEW		<u>Add</u>	<u>Add</u>	
MA-4 (3)	NONLOCAL MAINTENANCE COMPARABLE SECURITY AND SANITIZATION			Select	

5508 No OT Discussion for this control.

5509 <u>Control Enhancement:</u> (1) No OT Discussion for this control.

5510 <u>Control Enhancement:</u> (3) <u>OT Discussion:</u> The organization may need access to nonlocal

5511 maintenance and diagnostic services in order to restore essential OT operations or services.

5512 Example compensating controls include limiting the extent of the maintenance and diagnostic

services to the minimum essential activities, and carefully monitoring and auditing the non-local

5514 maintenance and diagnostic activities.

5515 <u>Rationale for adding MA-4 (1) to MOD and HIGH baselines:</u> OT environments are often heavily

5516 dependent on nonlocal maintenance providers, so organizations should have the ability to review

5517 logs about relevant maintenance activities.

5518 MA-5 MAINTENANCE PERSONNEL

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
MA-5	Maintenance Personnel	Select	Select	Select	
MA-5 (1)	MAINTENANCE PERSONNEL INDIVIDUALS WITHOUT APPROPRIATE ACCESS			Select	

5519 No OT discussion for this control.

5520 MA-6 TIMELY MAINTENANCE

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
MA-6	Timely Maintenance		Select	Select

5522 MA-7 FIELD MAINTENANCE

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
MA-7	Field Maintenance	<u>Add</u>	<u>Add</u>	<u>Add</u>

5523 OT Discussion: Organizations identify OT systems/system components with specific calibration,

5524 maintenance, or other requirements and limit maintenance to specific facilities. Some examples

5525 may include safety critical systems or systems involved in custody transfer where accuracy

tolerances are limited and additional quality control checks are required.

5527 <u>Rationale for adding MA-7 to LOW, MOD and HIGH baselines:</u> Some OT equipment has

5528 specific requirements for calibration, maintenance, and modification to meet regulatory or safety

standards. Different deployed locations may impact the quality and precision of field

5530 maintenance.

5531 F.7.10 MEDIA PROTECTION – MP

5532 MP-1 POLICY AND PROCEDURES

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
MP-1	Policy and Procedures	Select	Select	Select

5533 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5534 and the relationship to non-OT systems.

5535 MP-2 MEDIA ACCESS

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
MP-2	Media Access	Select	Select	Select

5536 No OT discussion for this control.

5537 MP-3 MEDIA MARKING

CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
		LOW	MOD	HIGH
MP-3	Media Marking		Select	Select

5539 MP-4 MEDIA STORAGE

CNTL			CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
MP-4	Media Storage		Select	Select	

5540 No OT Discussion for this control.

5541 MP-5 MEDIA TRANSPORT

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MP-5	Media Transport		Select	Select	

5542 No OT Discussion for this control.

5543 MP-6 MEDIA SANITIZATION

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MP-6	Media Sanitization	Select	Select	Select	
MP-6 (1)	MEDIA SANITIZATION REVIEW, APPROVE, TRACK, DOCUMENT, AND VERIFY			Select	
MP-6 (2)	MEDIA SANITIZATION EQUIPMENT TESTING			Select	
MP-6 (3)	MEDIA SANITIZATION NONDESTRUCTIVE TECHNIQUES			Select	

5544 No OT Discussion for this control.

5545 **MP-7 MEDIA USE**

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
MP-7	Media Use	Select	Select	Select	

5546 No OT Discussion for this control.

5547 F.7.11 PHYSICAL AND ENVIRONMENTAL PROTECTION – PE

5548 Tailoring Considerations for the Physical and Environmental Protection Family

- 5549 Physical and environmental protections are often used as a compensating control for many OT
- 5550 systems; therefore, physical and environmental protection controls are especially important. Any
- 5551 selected compensating control mitigates risk to an acceptable level.

5552 **PE-1 POLICY AND PROCEDURES**

NO	CONTROL NAME	CONTROL BASELINES			
	NO.	Control Enhancement Name	LOW	MOD	HIGH
PE-1	1	Policy and Procedures	Select	Select	Select

5553 OT Discussion: The policy specifically addresses the unique properties and requirements of OT

and the relationship to non-OT systems. The OT components can be distributed over a large

5555 facility footprint or geographic area and can be an entry point into the entire organizational

network OT. Regulatory controls may also apply.

5557 PE-2 PHYSICAL ACCESS AUTHORIZATIONS

NO	CONTROL NAME	CON	TROL BASEL	INES
	Control Enhancement Name	LOW	MOD	HIGH
PE-2	Physical Access Authorizations	Select	Select	Select

5558 No OT Discussion for this control.

5559 **PE-3 PHYSICAL ACCESS CONTROL**

CNTL		CONTROL BASELINES		
NO.		LOW	MOD	HIGH
PE-3	Physical Access Control	Select	Select	Select
PE-3 (1)	PHYSICAL ACCESS CONTROL SYSTEM ACCESS			Select

5560 <u>OT Discussion</u>: The organization considers OT safety and security interdependencies. The

organization considers access requirements in emergency situations. During an emergency-

related event, the organization may restrict access to OT facilities and assets to authorized

5563 individuals only. OT systems are often constructed of devices that either do not have or cannot

use comprehensive access control capabilities due to time-restrictive safety constraints. Physical

access controls and defense-in-depth measures are used by the organization when necessary and

5566 possible to supplement OT security when electronic mechanisms are unable to fulfill the security

requirements of the organization's security plan.

5568 <u>Control Enhancement:</u> (1) No OT discussion for this control.

5569 **PE-4** ACCESS CONTROL FOR TRANSMISSION

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
PE-4	Access Control for Transmission		Select	Select	

5570 No OT Discussion for this control.

5571 **PE-5** ACCESS CONTROL FOR OUTPUT DEVICES

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
PE-5	Access Control for Output Devices		Select	Select	

5572 No OT Discussion for this control.

5573 **PE-6 MONITORING PHYSICAL ACCESS**

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
PE-6	Monitoring Physical Access	Select	Select	Select
PE-6 (1)	MONITORING PHYSICAL ACCESS INTRUSION ALARMS AND SURVEILLANCE EQUIPMENT		Select	Select
PE-6 (4)	MONITORING PHYSICAL ACCESS MONITORING PHYSICAL ACCESS TO SYSTEMS		<u>Add</u>	Select

- 5574 No OT discussion for this control.
- 5575 <u>Control Enhancement:</u> (1) (4) No OT Discussion for this control.
- 5576 <u>Rationale for adding PE-6 (4) to MOD baseline:</u> Many of the OT components are in remote
- 5577 geographical and dispersed locations. Other components may be in ceilings, floors, or
- 5578 distribution closets. Furthermore, physical access controls are frequently used as compensating
- 5579 controls when devices lack the ability to enforce logical access restrictions.

5580 **PE-8 VISITOR ACCESS RECORDS**

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	NO. Control Enhancement Name	LOW	MOD	HIGH	
PE-8	Visitor Access Records	Select	Select	Select	
PE-8 (1)	VISITOR ACCESS RECORDS AUTOMATED RECORDS MAINTENANCE AND REVIEW			Select	

5582 PE-9 POWER EQUIPMENT AND CABLING

CNTL NO.	CONTROL NAME	CONTROL BASELINES		CONTROL NAME	INES
	Control Enhancement Name	LOW	MOD	HIGH	
PE-9	Power Equipment and Cabling		Select	Select	

5583 No OT Discussion for this control.

5584 **PE-10 EMERGENCY SHUTOFF**

CNTL			ROL BASELINES	
NO.		LOW	MOD	HIGH
PE-10	Emergency Shutoff		Select	Select

5585 <u>OT Discussion:</u> It may not be possible or advisable to shut off power to some OT. The

5586 [organizational-defined parameters] for this control should be implemented in consultation with

5587 safety and operational personnel. Example compensating controls include failing to a known

5588 state and emergency procedures.

5589 **PE-11 EMERGENCY POWER**

CNTL			SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
PE-11	Emergency Power		Select	Select	
PE-11 (1)	EMERGENCY POWER ALTERNATE POWER SUPPLY - MINIMAL OPERATIONAL CAPABILITY			Select	
PE-11 (2)	EMERGENCY POWER ALTERNATE POWER SUPPLY - SELF-CONTAINED				

5590 No OT Discussion for this control.

5591 **PE-12 EMERGENCY LIGHTING**

CNTL NO.	CONTROL NAME	CONTROL BASELINES		INES
	Control Enhancement Name	LOW	MOD	HIGH
PE-12	Emergency Lighting	Select	Select	Select

5593 **PE-13** FIRE PROTECTION

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
PE-13	Fire Protection	Select	Select	Select	
PE-13 (1)	FIRE PROTECTION DETECTION SYSTEMS – AUTOMATIC ACTIVATION AND NOTIFICATION		Select	Select	
PE-13 (2)	FIRE PROTECTION SUPPRESSION SYSTEMS – AUTOMATIC ACTIVATION AND NOTIFICATION			Select	

5594 <u>OT Discussion:</u> Fire suppression mechanisms should take the OT environment into account (e.g.,

- 5595 water sprinkler systems could be hazardous in specific environments).
- 5596 <u>Control Enhancement:</u> (1) (2) No OT Discussion for this control.

5597 **PE-14 ENVIRONMENTAL CONTROLS**

-	CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
	NO.		LOW	MOD	HIGH
	PE-14	Environmental Controls	Select	Select	Select

5598 OT Discussion: Temperature and humidity controls are typically components of other OT systems such as the HVAC, process, or lighting systems, or can be a standalone and unique OT 5599 5600 system. OT can operate in extreme environments and both interior and exterior locations. For a 5601 specific OT, the temperature and humidity design and operational parameters dictate the 5602 performance specifications. As OT and IT become interconnected and the network provides connectivity across the hybrid domain, power circuits, distribution closets, routers, and switches 5603 5604 that support fire protection and life safety systems must be maintained at the proper temperature 5605 and humidity. When environmental controls cannot be implemented, use hardware that is 5606 engineered to withstand the unique environmental hazards.

5607 **PE-15 WATER DAMAGE PROTECTION**

	CONTROL BASELINES			
NO.		LOW	MOD	HIGH
PE-15	Water Damage Protection	Select	Select	Select
PE-15 (1)	WATER DAMAGE PROTECTION AUTOMATION SUPPORT			Select

5608 <u>OT Discussion:</u> Water damage protection and use of shutoff and isolation valves is both a

5609 procedural action and a specific type of OT. OT used in the manufacturing, hydropower,

transportation/navigation, water, and wastewater industries rely on the movement of water and

are specifically designed to manage the quantity/flow and pressure of water. As OT and IT

5612 become interconnected and the network provides connectivity across the hybrid domain, power

- 5613 circuits, distribution closets, routers and switches that support fire protection and life safety
- 5614 systems should ensure that water will not disable the system (e.g., a fire that activates the
- 5615 sprinkler system does not spray onto the fire control servers, router, switches and short out the
- 5616 alarms, egress systems, emergency lighting, and suppression systems).
- 5617 <u>Control Enhancement:</u> (1) No OT Discussion for this control.

5618 **PE-16 DELIVERY AND REMOVAL**

CNTL NO.	CONTROL NAME	CONTROL BASELINES		
	Control Enhancement Name	LOW	MOD	HIGH
PE-16	Delivery and Removal	Select	Select	Select

5619 No OT Discussion for this control.

5620 **PE-17** ALTERNATE WORK SITE

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
		LOW	MOD	HIGH
PE-17	Alternate Work Site		Select	Select

5621 No OT Discussion for this control.

5622 PE-18 LOCATION OF SYSTEM COMPONENTS

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
PE-18	Location of System Components			Select

5623 No OT Discussion for this control.

5624 **PE-21 ELECTROMAGNETIC PULSE PROTECTION**

CNTL	CONTROL NAME	CONTROL BASELINES	INES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
PE-21	Electromagnetic Pulse Protection			

5625 <u>OT Discussion</u>: Organizations managing OT equipment may choose to utilize electromagnetic

5626 (EM) pulse protection to prevent adversarial or environmental EM threats. Organizations may

select to follow National Coordinating Center for Communications (NCC) guidelines on EM

5628 <u>pulse protection</u>.

5629 **PE-22 COMPONENT MARKING**

CN	ITL	CONTROL NAME	ROL NAME CONTROL BASELI		
N	0.	Control Enhancement Name	LOW	MOD	HIGH
PE-22	2	Component Marking		<u>Add</u>	<u>Add</u>

5630 OT Discussion: Hardware components are marked or labeled to indicate which information is

5631 processed, stored, or transmitted. Component markings can be useful in differentiating between

5632 safety and control systems, OT and IT equipment, and internally and externally connected

5633 systems. Marking components reduces the probability of mismanaging the system or performing 5634 maintenance on an incorrect device.

- 5635 Rationale for adding PE-22 to MOD and HIGH baselines: OT is unique in that it may look like
- an IT component, but it may perform a very different function. Visible differentiation between
- 5637 components performing different functions can help reduce reliability incidents due to
- 5638 maintenance errors.

5639 **F.7.12 PLANNING – PL**

5640 PL-1 POLICY AND PROCEDURES

CNTL		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
PL-1	Policy and Procedures	Select	Select	Select

5641 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5642 and the relationship to non-OT systems.

5643 PL-2 SYSTEM SECURITY AND PRIVACY PLANS

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PL-2	System Security and Privacy Plans	Select	Select	Select

5644 <u>OT Discussion:</u> When systems are highly interconnected, coordinated planning is essential. A 5645 low-impact system could adversely affect a higher-impact system.

5646 **PL-4 RULES OF BEHAVIOR**

CNTL			CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
PL-4	Rules of Behavior	Select	Select	Select	
PL-4 (1)	RULES OF BEHAVIOR SOCIAL MEDIA AND EXTERNAL SITE / APPLICATION USAGE RESTRICTIONS	Select	Select	Select	

5647 No OT Discussion for this control.

5648 PL-7 CONCEPT OF OPERATIONS

CI	NTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES			
N	10.	Control Enhancement Name	LOW	MOD	HIGH	
PL-7		Concept of Operations				

5649 <u>OT Discussion:</u> Organizations need to consider documenting known operational procedures and 5650 exploring how they relate to the combination of IT and OT technologies within the environment.

5651 PL-8 SECURITY AND PRIVACY ARCHITECTURES

CNTL		SI CON	D INES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
PL-8	Security and Privacy Architectures		Select	Select
PL-4 (1)	SECURITY AND PRIVACY ARCHITECTURES DEFENSE IN DEPTH			

5652 No OT Discussion for this control.

5653 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Defense in depth is considered a common practice for 5654 security architecture within OT environments.

5655 PL-9 CENTRAL MANAGEMENT

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PL-9	Central Management			

5656 <u>OT Discussion</u>: If the architecture allows, consider centrally managing flaw remediation,

5657 malicious code protection, logging, incident detection, etc.

5658 PL-10 BASELINE SELECTION

CNTI NO.	CNTL	CONTROL NAME	CON	TROL BASEL	INES
	NO.	Control Enhancement Name	LOW	LOW MOD	HIGH
	PL-10	Baseline Selection	Select	Select	Select

5660 PL-11 BASELINE TAILORING

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW MOD	HIGH	
PL-11	Baseline Tailoring	Select	Select	Select

5661 No OT Discussion for this control.

5662F.7.13ORGANIZATION-WIDE INFORMATION SECURITY PROGRAM MANAGEMENT
CONTROLS - PM

5664 Characteristics of the Organization-Wide Information Security Program Management 5665 Control Family

5666 Organization-Wide Information Security Program Management Controls are deployed 5667 organization-wide supporting the information security program. They are not associated with 5668 control baselines and are independent of any system impact level.

- 5669 Program Management Controls should specifically address the unique properties and
- 5670 requirements of OT, the relationship to non-OT systems, and the relationship to other programs
- 5671 concerned with operational characteristics of OT (e.g., safety, efficiency, reliability, resilience).
- 5672 To achieve this, the security program should utilize interdisciplinary teams that can help
- 5673 reconcile and balance conflicting equities, objectives, and responsibilities such as capability,
- adaptability, resilience, safety, security, usability, and efficiency.

5675 PM-1 INFORMATION SECURITY PROGRAM PLAN

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-1	Information Security Program Plan

5676 No OT Discussion for this control.

5677 PM-2 INFORMATION SECURITY PROGRAM LEADERSHIP ROLE

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-2	Information Security Program Leadership Role

5678 No OT Discussion for this control.

5679 PM-3 INFORMATION SECURITY AND PRIVACY RESOURCES

CNTL NO.	CONTROL NAME
-------------	--------------

	Control Enhancement Name
PM-3	Information Security and Privacy Resources

5680 No OT Discussion for this control.

5681 PM-4 PLAN OF ACTION AND MILESTONES PROCESS

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-4	Plan of Action and Milestones Process

5682 No OT Discussion for this control.

5683 PM-5 SYSTEM INVENTORY

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-5	System Inventory

5684 No OT Discussion for this control.

5685 **PM-6 MEASURES OF PERFORMANCE**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-6	Measures of Performance

5686 No OT Discussion for this control.

5687 **PM-7 ENTERPRISE ARCHITECTURE**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-7	Enterprise Architecture

5689 PM-8 CRITICAL INFRASTRUCTURE PLAN

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-8	Critical Infrastructure Plan

5690 <u>OT Discussion</u>: Organizations should be familiar with protection requirements and guidance

5691 defined by executive orders, government sector specific agencies (SSAs), and industry trade

5692 organizations.

5693 PM-9 RISK MANAGEMENT STRATEGY

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-9	Risk Management Strategy

5694 No OT Discussion for this control.

5695 **PM-10 AUTHORIZATION PROCESS**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-10	Authorization Process

5696 No OT Discussion for this control.

5697 PM-11 MISSION AND BUSINESS PROCESS DEFINITION

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-11	Mission and Business Process Definition

5698 No OT Discussion for this control.

5699 **PM-12 INSIDER THREAT PROGRAM**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-12	Insider Threat Program
NIST SP 800-82r3 ipd **INITIAL PUBLIC DRAFT**

5701 PM-13 SECURITY AND PRIVACY WORKFORCE

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-13	Security and Privacy Workforce

5702 No OT Discussion for this control.

5703 **PM-14 TESTING, TRAINING, AND MONITORING**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-14	Testing, Training, and Monitoring

No OT Discussion for this control. 5704

5705 PM-15 SECURITY AND PRIVACY GROUPS AND ASSOCIATIONS

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-15	Security and Privacy Groups and Associations

5706 OT Discussion: Organizations should be familiar with relevant security-focused and industry-

specific groups or associations, including government sector specific agencies (SSAs), 5707

information sharing and analysis centers (ISAC), and industry trade organizations. 5708

5709 **PM-16** THREAT AWARENESS PROGRAM

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-16	Threat Awareness Program

5710 OT Discussion: The organization should collaborate and share information about potential

- incidents on a timely basis. CISA serves as a centralized location where operational elements 5711
- involved in cybersecurity and communications reliance are coordinated and integrated. 5712
- Organizations should consider having both an unclassified and classified information sharing 5713
- 5714 capability.

5715 PM-17 PROTECTING CONTROLLED UNCLASSIFIED INFORMATION ON EXTERNAL SYSTEMS

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-17	Protecting Controlled Unclassified Information on External Systems

5716 <u>OT Discussion</u>: This control applies to federal organizations and other organizations supporting

5717 the government that process Controlled Unclassified Information (CUI).

5718 PM-18 PRIVACY PROGRAM PLAN

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-18	Privacy Program Plan

5719 No OT Discussion for this control.

5720 PM-19 PRIVACY PROGRAM LEADERSHIP ROLE

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-19	Privacy Program Leadership Role

5721 No OT Discussion for this control.

5722 PM-20 DISSEMINATION OF PRIVACY PROGRAM INFORMATION

CNTL NO.	CONTROL NAME Control Enhancement Name
PM-20	Dissemination of Privacy Program Information
PM-20 (1)	DISSEMINATION OF PRIVACY PROGRAM INFORMATION PRIVACY POLICIES ON WEBSITES, APPLICATIONS, AND DIGITAL SERVICES

5723 No OT Discussion for this control.

5724 PM-21 ACCOUNTING OF DISCLOSURES

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-21	Accounting of Disclosures

5726 PM-22 PERSONALLY IDENTIFIABLE INFORMATION QUALITY MANAGEMENT

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-22	Personally Identifiable Information Quality Management

5727 No OT Discussion for this control.

5728 **PM-23 DATA GOVERNANCE BODY**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-23	Data Governance Body

5729 No OT Discussion for this control.

5730 PM-24 DATA INTEGRITY BOARD

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-24	Data Integrity Board

5731 No OT Discussion for this control.

5732PM-25MINIMIZATION OF PERSONALLY IDENTIFIABLE INFORMATION USED IN TESTING,
TRAINING, AND RESEARCH

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-25	Minimization of Personally Identifiable Information Used in Testing, Training, and Research

5734 No OT Discussion for this control.

5735 PM-26 COMPLAINT MANAGEMENT

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-26	Complaint Management

NIST SP 800-82r3 ipd INITIAL PUBLIC DRAFT

5737 PM-27 PRIVACY REPORTING

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-27	Privacy Reporting

5738 No OT Discussion for this control.

5739 PM-28 RISK FRAMING

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-28	Risk Framing

5740 No OT Discussion for this control.

5741 PM-29 RISK MANAGEMENT PROGRAM LEADERSHIP ROLES

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-29	Risk Management Program Leadership Roles

5742 No OT Discussion for this control.

5743 PM-30 SUPPLY CHAIN RISK MANAGEMENT STRATEGY

CNTL NO.	CONTROL NAME Control Enhancement Name		
PM-30	Supply Chain Risk Management Strategy		
PM-30 (1)	SUPPLY CHAIN RISK MANAGEMENT STRATEGY SUPPLIERS OF CRITICAL OR MISSION-ESSENTIAL ITEMS		

5744 No OT Discussion for this control.

5745 PM-31 CONTINUOUS MONITORING STRATEGY

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-31	Continuous Monitoring Strategy

5747 **PM-32 PURPOSING**

CNTL	CONTROL NAME
NO.	Control Enhancement Name
PM-32	Purposing

5748 No OT Discussion for this control.

5749 F.7.14 PERSONNEL SECURITY – PS

5750 Tailoring Considerations for the Personnel Security Family

5751 Personnel security controls require collaboration between OT, IT, security, and HR personnel.

5752 **PS-1 POLICY AND PROCEDURES**

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
PS-1	Policy and Procedures	Select	Select	Select

5753 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5754 and the relationship to non-OT systems.

5755 **PS-2 POSITION RISK DESIGNATION**

CNTL	CONTROL IVANE	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
PS-2	Position Risk Designation	Select	Select	Select

5756 <u>OT Discussion</u>: Private organizations should utilize existing sector specific regulations, laws,

5757 policy, or guidance for determining appropriate risk designations for positions.

5758 PS-3 PERSONNEL SCREENING

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
PS-3	Personnel Screening	Select	Select	Select

5760 **PS-4 PERSONNEL TERMINATION**

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
PS-4	Personnel Termination	Select	Select	Select
PS-4 (2)	PERSONNEL TERMINATION AUTOMATED ACTIONS			Select

5761 No OT Discussion for this control.

5762 **PS-5 PERSONNEL TRANSFER**

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	PS-5	Personnel Transfer	Select	Select	Select

5763 No OT Discussion for this control.

5764 **PS-6 ACCESS AGREEMENTS**

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PS-6	Access Agreements	Select	Select	Select

5765 No OT Discussion for this control.

5766 **PS-7 EXTERNAL PERSONNEL SECURITY**

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PS-7	External Personnel Security	Select	Select	Select

5767 No OT Discussion for this control.

5768 **PS-8 PERSONNEL SANCTIONS**

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PS-8	Personnel Sanctions	Select	Select	Select

5770 **PS-9 POSITION DESCRIPTIONS**

СNT	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
PS-9	Position Descriptions	Select	Select	Select

5771 No OT Discussion for this control.

5772 F.7.15 RISK ASSESSMENT – RA

5773 Many OT organizations have well-established risk assessment programs that can be leveraged 5774 for cybersecurity risk analysis.

5775 RA-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
RA-1	Policy and Procedures	Select	Select	Select

5776 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5777 and the relationship to non-OT systems.

5778 RA-2 SECURITY CATEGORIZATION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
RA-2	Security Categorization	Select	Select	Select

5779 <u>OT Discussion:</u> Process hazard analysis (PHA), functional safety assessments, and other

organization-established risk assessments can be referenced to identify the impact level of theOT systems.

5782 RA-3 RISK ASSESSMENT

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
RA-3	Risk Assessment	Select	Select	Select
RA-3 (1)	RISK ASSESSMENT SUPPLY CHAIN RISK ASSESSMENT	Select	Select	Select

5784 RA-5 VULNERABILITY MONITORING AND SCANNING

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
RA-5	Vulnerability Monitoring and Scanning	Select	Select	Select
RA-5 (2)	VULNERABILITY MONITORING AND SCANNING UPDATE VULNERABILITIES TO BE SCANNED	Select	Select	Select
RA-5 (4)	VULNERABILITY MONITORING AND SCANNING DISCOVERABLE INFORMATION			Select
RA-5 (5)	VULNERABILITY MONITORING AND SCANNING PRIVILEGED ACCESS		Select	Select
RA-5 (11)	VULNERABILITY MONITORING AND SCANNING PUBLIC DISCLOSURE PROGRAM	Select	Select	Select

5785 <u>OT Discussion</u>: The organization makes a risk-based determination of how to monitor or scan for

5786 vulnerabilities on their system. This may include active scanning, passive monitoring, or

5787 compensating controls, depending on the system being scanned. For example, vulnerability

5788 examination may be performed using passive monitoring and manual visual inspection to

5789 maintain an up-to-date inventory of assets. That inventory can be cross-referenced against a list

5790 of known vulnerabilities (e.g., CISA advisories and NIST NVD). Production may need to be 5791 taken off-line before active scans can be conducted. Scans are scheduled to occur during planned

taken off-line before active scans can be conducted. Scans are scheduled to occur during planned
 OT outages whenever possible. If vulnerability scanning tools are used on adjacent non-OT

5792 Of outages whenever possible. If vulnerability scanning tools are used on adjacent non-Of 5793 networks, extra care is taken to ensure that they do not mistakenly scan the OT network.

5795 Automated network scanning is not applicable to non-routable communications such as serial

5795 networks. Compensating controls include providing a replicated or simulated system for

5796 conducting scans or host-based vulnerability applications.

5797 <u>Control Enhancement:</u> (2) (5) No OT Discussion for this control.

5798 <u>Control Enhancement</u>: (4) <u>OT Discussion</u>: Examples of discoverable information in OT could

5799 include information about key personnel or technical information relating to systems and

5800 configurations. Locations that may need to be monitored or scanned include technical forums,

5801 blogs, or vendor/contractor websites.

5802 <u>Control Enhancement:</u> (11) <u>OT Discussion:</u> For federal organizations, CISA <u>Binding Operational</u>

5803 <u>Directive 20-01</u> requires individual federal civilian executive branch agencies to develop and

5804 publish a vulnerability disclosure policy (VDP) for their internet-accessible systems and services,

and maintain processes to support their VDP. A VDP may be implemented at the organization

5806 level, rather than for each individual system. Non-federal as well as federal organizations could

5807 achieve this control by creating and monitoring an email address published on a public-facing

5808 website for contacting the organization regarding disclosures.

5809 RA-7 RISK RESPONSE

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
RA-7	Risk Response	Select	Select	Select

5810 No OT Discussion for this control.

5811 RA-9 CRITICALITY ANALYSIS

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
RA-9	Criticality Analysis		Select	Select

5812 No OT Discussion for this control.

5813 F.7.16 SYSTEM AND SERVICES ACQUISITION – SA

5814 Tailoring Considerations for the System and Services Acquisition Family

- 5815 In situations where the OT cannot support the specific System and Services Acquisition
- 5816 requirements of a control, the organization employs compensating controls in accordance with
- 5817 the general tailoring guidance. Examples of compensating controls are given with each control as
- 5818 appropriate.

5819 SA-1 POLICY AND PROCEDURES

CNTL		CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-1	Policy and Procedures	Select	Select	Select

5820 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5821 and the relationship to non-OT systems.

5822 SA-2 ALLOCATION OF RESOURCES

CNTL	CONTROL NAME		CONTROL BASELINES			
NO.	Control Enhancement Name	LOW MOD	HIGH			
SA-2	Allocation of Resources	Select	Select	Select		

5824 SA-3 SYSTEM DEVELOPMENT LIFE CYCLE

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
SA-3	System Development Life Cycle	Select	Select	Select	
SA-3 (1)	SYSTEM DEVELOPMENT LIFE CYCLE MANAGE PREPRODUCTION ENVIRONMENT				
SA-3 (3)	SYSTEM DEVELOPMENT LIFE CYCLE TECHNOLOGY REFRESH				

- 5825 No OT Discussion for this control.
- 5826 Control Enhancements: (1) OT Discussion: Organizations that do not maintain local
- preproduction environments and utilize a third-party integrator should ensure contracts are 5827
- 5828 developed to limit the security and privacy risks.
- 5829 Control Enhancements: (3) OT Discussion: Many OT systems have an expected life cycle that is
- longer than most IT components. Technology refresh is addressed in budget planning to limit the 5830 5831
- use of obsolete systems that present security or reliability risks.

5832 **ACQUISITION PROCESS** SA-4

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-4	Acquisition Process	Select	Select	Select
SA-4 (1)	ACQUISITION PROCESS FUNCTIONAL PROPERTIES OF CONTROLS		Select	Select
SA-4 (2)	ACQUISITION PROCESS DESIGN AND IMPLEMENTATION INFORMATION FOR CONTROLS		Select	Select
SA-4 (5)	ACQUISITION PROCESS SYSTEM, COMPONENT, AND SERVICE CONFIGURATIONS			Select
SA-4 (9)	ACQUISITION PROCESS FUNCTIONS, PORTS, PROTOCOLS, AND SERVICES IN USE		Select	Select
SA-4 (10)	ACQUISITION PROCESS USE OF APPROVED PIV PRODUCTS	Select	Select	Select
SA-4 (12)	ACQUISITION PROCESS DATA OWNERSHIP	Add	Add	<u>Add</u>

- OT Discussion: Organizations engage with OT suppliers to raise awareness of cybersecurity 5833
- needs. The SCADA/Control Systems Procurement Project provides example cybersecurity 5834
- 5835 procurement language for OT.
- 5836 Control Enhancements: (1) (2) (9) OT Discussion: When acquiring OT products, consideration
- for security requirements may not have been incorporated into the design. Procurement may need 5837
- 5838 to consider alternative products or complementary hardware, or plan for compensating controls.
- 5839 Control Enhancement: (10) OT Discussion: The use of approved PIV products is only required
- 5840 for organizations that follow OMB Memorandum M-19-17, e.g., federal agencies and

- 5841 contractors. Example compensating controls include employing external products on the FIPS
- 5842 201-approved products list for PIV capability in conjunction with OT products.
- 5843 <u>Control Enhancement:</u> (5) (12) No OT Discussion for this control.

5844 <u>Rationale for adding SA-4 (12) to LOW, MOD and HIGH baselines:</u> Organizationally sensitive

or proprietary OT data is often provided to contractors for project development or support;

therefore, data ownership should be defined prior to exchanging data with a vendor or integrator.

- 5847 The potential sharing of data with other parties and the potential deletion of the data after project
- 5848 completion should be determined. OT systems that are operated by contractors on behalf of the
- 5849 organization may be subject to the same requirements (legal, regulatory, etc.) for data ownership
- 5850 and retention.

5851 SA-5 SYSTEM DOCUMENTATION

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-5	System Documentation	Select	Select	Select

5852 No OT Discussion for this control.

5853 SA-8 SECURITY AND PRIVACY ENGINEERING PRINCIPLES

			TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-8	Security and Privacy Engineering Principles	Select	Select	Select

5854 No OT Discussion for this control.

5855 SA-9 EXTERNAL SYSTEM SERVICES

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
SA-9	External System Services	Select	Select	Select	
SA-9 (2)	EXTERNAL SYSTEM SERVICES IDENTIFICATION OF FUNCTIONS, PORTS, PROTOCOLS, AND SERVICES		Select	Select	

5857 SA-10 DEVELOPER CONFIGURATION MANAGEMENT

	CNTL	CONTROL NAME		CONTROL BASELINES			
	NO.	Control Enhancement Name	LOW	MOD	HIGH		
	SA-10	Developer Configuration Management		Select	Select		

5858 <u>OT Discussion:</u> Personnel knowledgeable in security and privacy requirements are included in 5859 the change management process for the developer.

5860 SA-11 DEVELOPER TESTING AND EVALUATION

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	SA-11	Developer Testing and Evaluation		Select	Select

5861 No OT Discussion for this control.

5862 SA-15 DEVELOPMENT PROCESS, STANDARDS, AND TOOLS

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-15	Development Process, Standards, and Tools		Select	Select
SA-15 (3)	DEVELOPMENT PROCESS, STANDARDS, AND TOOLS CRITICALITY ANALYSIS		Select	Select

5863 No OT Discussion for this control.

5864 SA-16 DEVELOPER-PROVIDED TRAINING

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	SA-16	Developer-Provided Training			Select

5865 No OT Discussion for this control.

5866 SA-17 DEVELOPER SECURITY AND PRIVACY ARCHITECTURE AND DESIGN

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SA-17	Developer Security and Privacy Architecture and Design			Select

5868 SA-21 DEVELOPER SCREENING

	CNTL	CONTROL NAME		CONTROL BASELINES			
	NO.	Control Enhancement Name	LOW	MOD	HIGH		
S	A-21	Developer Screening			Select		

5869 No OT Discussion for this control.

5870 SA-22 UNSUPPORTED SYSTEM COMPONENTS

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
SA-22	Unsupported System Components	Select	Select	Select

5871 <u>OT Discussion:</u> OT systems may contain system components that are no longer supported by the

5872 developer, vendor, or manufacturer and have not been replaced due to various operational,

5873 safety, availability, or lifetime constraints. Organizations identify alternative methods to continue

supported operation of such system components and consider additional compensating controls

5875 to mitigate against known threats and vulnerabilities to unsupported system components.

5876 F.7.17 SYSTEM AND COMMUNICATIONS PROTECTION - SC

5877 Tailoring Considerations for the System and Communications Protection Family

5878 The use of cryptography is determined after careful consideration of the security needs and the

5879 potential ramifications on system performance. For example, the organization considers whether

5880 latency induced from the use of cryptography would adversely impact the operational

5881 performance of the OT. While the legacy devices commonly found within OT often lack direct

5882 support of cryptographic functions, compensating controls (e.g., encapsulations) may be used to

5883 meet the intent of the control.

5884 In situations where the OT cannot support the specific System and Communications Protection

5885 requirements of a control, the organization employs compensating controls in accordance with

5886 the general tailoring guidance. Examples of compensating controls are given with each control as

5887 appropriate.

5888 SC-1 POLICY AND PROCEDURES

CNTL		CONTROL BASELINES		
NO.		LOW	MOD	HIGH
SC-1	Policy and Procedures	Select	Select	Select

5889 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 5890 and the relationship to non-OT systems.

5891 SC-2 SEPARATION OF SYSTEM AND USER FUNCTIONALITY

CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
	Control Enhancement Name	LOW	MOD	HIGH
SC-2	Separation of System and User Functionality		Select	Select

5892 <u>OT Discussion:</u> Physical separation includes using separate systems for managing the OT than

5893 for operating OT components. Logical separation includes the use of different user accounts for

administrative and operator privileges. Example compensating controls include providing
 increased auditing measures.

5896 SC-3 SECURITY FUNCTION ISOLATION

	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH
SC-3	Security Function Isolation			Select

5897 <u>OT Discussion:</u> Organizations consider implementing this control when designing new

architectures or updating existing components. An example compensating control includesaccess controls.

5900 SC-4 INFORMATION IN SHARED SYSTEM RESOURCES

NO	CONTROL NAME	CONTROL BASELINES		INES
	Control Enhancement Name	LOW	MOD	HIGH
SC-4	Information in Shared System Resources		Select	Select

<u>OT Discussion</u>: This control is especially relevant for OT systems that process confidential data.
 Example compensating controls include architecting the use of the OT to prevent sharing system
 resources.

5904 SC-5 DENIAL-OF-SERVICE PROTECTION

CNTL		CONTROL BASELINES		
NO.		LOW	MOD	HIGH
SC-5	Denial-of-Service Protection	Select	Select	Select

5905 <u>OT Discussion:</u> Some OT equipment may be more susceptible to DoS attacks due to the time

criticality of some OT applications. Risk-based analysis informs prioritization of DoS protectionand establishment of policy and procedure.

5908 SC-7 BOUNDARY PROTECTION

CNTL			UPPLEMENTI TROL BASEL	
NO.	Control Enhancement Name	LOW	MOD	HIGH
SC-7	Boundary Protection	Select	Select	Select
SC-7 (3)	BOUNDARY PROTECTION ACCESS POINTS		Select	Select
SC-7 (4)	BOUNDARY PROTECTION EXTERNAL TELECOMMUNICATIONS SERVICES		Select	Select
SC-7 (5)	BOUNDARY PROTECTION DENY BY DEFAULT - ALLOW BY EXCEPTION		Select	Select
SC-7 (7)	BOUNDARY PROTECTION SPLIT TUNNELING FOR REMOTE DEVICES		Select	Select
SC-7 (8)	BOUNDARY PROTECTION ROUTE TRAFFIC TO AUTHENTICATED PROXY SERVERS		Select	Select
SC-7 (18)	BOUNDARY PROTECTION FAIL SECURE		<u>Add</u>	Select
SC-7 (21)	BOUNDARY PROTECTION ISOLATION OF SYSTEM COMPONENTS			Select
SC-7 (28)	BOUNDARY PROTECTION CONNECTIONS TO PUBLIC NETWORKS	<u>Add</u>	<u>Add</u>	<u>Add</u>
SC-7 (29)	BOUNDARY PROTECTION SEPARATE SUBNETS TO ISOLATE FUNCTIONS	<u>Add</u>	<u>Add</u>	<u>Add</u>

- 5909 No OT Discussion for this control.
- 5910 <u>Control Enhancement</u>: (3) (4) (5) (7) (8) (21) No OT discussion for this control.
- 5911 <u>Control Enhancement</u>: (18) <u>OT Discussion</u>: The organization selects an appropriate failure mode 5912 (e.g., permit or block all communications).
- 5913 <u>Control Enhancement: (28) OT Discussion:</u> Organizations consider the need for a direct
- 5914 connection to a public network for each OT system, including potential benefits, additional threat
- 5915 vectors, and potential adverse impact specifically relevant to what type of public access that
- 5916 connection introduces.
- 5917 <u>Control Enhancement</u>: (29) <u>OT Discussion</u>: Subnets can be used to isolate low-risk functions
- 5918 from higher-risk ones, and control from safety. Subnets should be considered along with other
- 5919 boundary protection technologies.
- 5920 <u>Rationale for adding SC-7 (18) to MOD baseline</u>: The ability to choose the failure mode for the
- 5921 physical part of the OT differentiates the OT from other IT systems. This choice may be a significant influence in mitigating the impact of a failure.
- 5923 Rationale for adding SC-7 (28) to LOW, MOD and HIGH baselines: Access to OT should be
- 5924 restricted to individuals required for operation. A connection made from the OT directly to a
- 5925 public network has limited applicability in OT environments, but significant potential risk.

- 5926 Rationale for adding SC-7 (29) to LOW, MOD and HIGH baselines: In OT environments,
- subnets and zoning is a common practice for isolating functions.

5928 SC-8 TRANSMISSION CONFIDENTIALITY AND INTEGRITY

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CON	INES	
NO.		LOW	MOD	HIGH
SC-8	Transmission Confidentiality and Integrity		Select	Select
SC-8 (1)	TRANSMISSION CONFIDENTIALITY AND INTEGRITY CRYPTOGRAPHIC PROTECTION		Select	Select

- 5929 No OT discussion for this control.
- 5930 <u>Control Enhancement</u>: (1) <u>OT Discussion</u>: When transmitting across untrusted network
- segments, the organization explores all possible cryptographic integrity mechanisms (e.g., digital
- signature, hash function) to protect confidentiality and integrity of the information. Example
- 5933 compensating controls include physical protections, such as a secure conduit (e.g., point-to-point
- 5934 link) between two system components.

5935 SC-10 NETWORK DISCONNECT

	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH
SC-10	Network Disconnect		Remove	Remove

- 5936 No OT Discussion for this control.
- 5937 <u>Rationale for removing SC-10 from MOD and HIGH baselines:</u> The intent of this control is
- 5938 effectively covered by AC-17 (9) for OT systems.

5939 SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT

CNTL	CONTROL NAME		CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
SC-12	Cryptographic Key Establishment and Management	Select	Select	Select	
SC-12 (1)	CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT AVAILABILITY			Select	

5941 SC-13 CRYPTOGRAPHIC PROTECTION

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SC-13	Cryptographic Protection	Select	Select	Select	

5942 No OT Discussion for this control.

5943 SC-15 COLLABORATIVE COMPUTING DEVICES

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
SC-15	Collaborative Computing Devices	Select	Select	Select

5944 No OT Discussion for this control.

5945 SC-17 PUBLIC KEY INFRASTRUCTURE CERTIFICATES

CNTL	CONTROL NAME	CONTROL BASELINES			
NO.	Control Enhancement Name	LOW	MOD	HIGH	
SC-17	Public Key Infrastructure Certificates		Select	Select	

5946 No OT Discussion for this control.

5947 SC-18 MOBILE CODE

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SC-18	Mobile Code		Select	Select	

5948 No OT Discussion for this control.

5949 SC-20 SECURE NAME / ADDRESS RESOLUTION SERVICE (AUTHORITATIVE SOURCE)

CNTL	CONTROL NAME	CONTROL BASELINES		BASELINES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	Select	Select	Select

5950 <u>OT Discussion:</u> The use of secure name/address resolution services should be determined only

5951 after careful consideration and after verification that it does not adversely impact the operational 5952 performance of the OT.

5953
5954SECURE NAME / ADDRESS RESOLUTION SERVICE (RECURSIVE OR CACHING
RESOLVER)

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
SC-21	Secure Name /Address Resolution Service (Recursive or Caching Resolver)	Select	Select	Select

5955 <u>OT Discussion:</u> The use of secure name/address resolution services should be determined only

5956 after careful consideration and after verification that it does not adversely impact the operational 5957 performance of the OT.

5958 SC-22 ARCHITECTURE AND PROVISIONING FOR NAME / ADDRESS RESOLUTION SERVICE

CNTL NO.	CONTROL NAME	CONTROL BASELINES		INES
	Control Enhancement Name	LOW	MOD	HIGH
SC-22	Architecture and Provisioning for Name/Address Resolution Service	Select	Select	Select

5959 <u>OT Discussion:</u> The use of secure name/address resolution services should be determined only

5960 after careful consideration and after verification that it does not adversely impact the operational 5961 performance of the OT.

5962 SC-23 SESSION AUTHENTICITY

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
		LOW	MOD	HIGH	
SC-23	Session Authenticity		Select	Select	

5963 <u>OT Discussion:</u> Example compensating controls include auditing measures.

5964 SC-24 FAIL IN KNOWN STATE

	CNTL	CONTROL NAME		SUPPLEMENTED CONTROL BASELINES		
	NO.	IO. Control Enhancement Name	LOW	MOD	HIGH	
s	C-24	Fail in Known State		Add	Select	

5965 <u>OT Discussion:</u> The organization selects an appropriate failure state. Preserving OT state 5966 information includes consistency among OT state variables and the physical state which the OT 5967 represents (e.g., whether valves are open or closed, communication permitted or blocked, 5968 continue operations).

5969 <u>Rationale for adding SC-24 to MOD baseline</u>: As part of the architecture and design of the OT,

5970 the organization selects an appropriate failure state of an OT in accordance with the function

5971 performed by the OT and the operational environment. The ability to choose the failure mode for

5972 the physical part of OT differentiates OT systems from other IT systems. This choice may be a

5973 significant influence in mitigating the impact of a failure, since it may be disruptive to ongoing

5974 physical processes (e.g., valves failing in closed position may adversely affect system cooling).

5975 SC-28 PROTECTION OF INFORMATION AT REST

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SC-28	Protection of Information at Rest		Select	Select	
SC-28 (1)	PROTECTION OF INFORMATION AT REST CRYPTOGRAPHIC PROTECTION		Select	Select	

5976 <u>OT Discussion</u>: The use of cryptographic mechanisms is implemented only after careful

5977 consideration and after verification that it does not adversely impact the operational performance

5978 of the OT. Cryptographic mechanisms may not be feasible on certain OT devices. In these cases,

5979 compensating controls may be relocating the data to a location that does support cryptographic

- 5980 mechanisms.
- 5981 <u>Control Enhancement</u>: (1) No OT Discussion for this control.

5982 SC-32 SYSTEM PARTITIONING

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SC-32	System Partitioning				
SC-32 (1)	SYSTEM PARTITIONING SEPARATE PHYSICAL DOMAINS FOR PRIVILEGED FUNCTIONS				

- 5983 No OT Discussion for this control.
- 5984 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Organizations consider separate physical domains for
- 5985 privileged functions such as those affecting security and safety.

5986 SC-39 PROCESS ISOLATION

CNTL	CNTL NO. CONTROL NAME Control Enhancement Name	CONTROL BASELINES		INES
NO.		LOW	MOD	HIGH
SC-39	Process Isolation	Select	Select	Select

5987 <u>OT Discussion:</u> Example compensating controls include partition processes to separate

5988 platforms.

5989 SC-41 PORT AND I/O DEVICE ACCESS

CNTL	CONTROL NAME		SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH	
SC-41	Port and I/O Device Access	<u>Add</u>	<u>Add</u>	<u>Add</u>	

- 5990 No OT discussion for this control.
- 5991 Rationale for adding SC-41 to LOW, MOD and HIGH baselines: OT functionality is generally
- 5992 defined in advance and does not change often.

5993 SC-45 SYSTEM TIME SYNCHRONIZATION

CNTL	CNTL CONTROL NAME NO. Control Enhancement Name	SUPPLEMENTED CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SC-45	System Time Synchronization	<u>Add</u>	<u>Add</u>	<u>Add</u>	
SC-45 (1)	SYSTEM TIME SYNCHRONIZATION SYNCHRONIZATION WITH AUTHORITATIVE TIME SOURCE				

- 5994 <u>OT Discussion:</u> Organizations coordinate time synchronization on OT to allow for accurate 5995 troubleshooting and forensics.
- 5996 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Syncing with an authoritative time source may be 5997 selected as a control when data is being correlated across organizational boundaries. OT employ 5998 suitable mechanisms (e.g., GPS, IEEE 1588) for time stamps.
- 5999 <u>Rationale for adding SC-45 to LOW, MOD and HIGH baselines</u>: Organizations may find relative
 6000 system time beneficial for many OT systems to ensure safe, reliable delivery of essential
 6001 functions. Time synchronization can also make root cause analysis more efficient by ensuring
 6002 audit logs from different systems are aligned so that, when the logs are aggregated, organizations
 6003 have an accurate view of events across multiple systems.

6004 SC-47 ALTERNATE COMMUNICATIONS PATHS

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES			
NO.	Control Enhancement Name	LOW MC	MOD	HIGH	
SC-47	Alternate Communications Paths			<u>Add</u>	

6005 <u>OT Discussion:</u> Organization considers which systems require alternate communications paths to 6006 ensure a loss of communication does not lead to an unacceptable loss of view, control, or safety 6007 event.

6008 <u>Rationale for adding SC-47 to HIGH baseline</u>: For continuity of operations during an incident, 6009 organizations should consider establishing alternate communications paths for command-and-

- 6010 control purposes to continue to operate and take appropriate actions for high-impact systems
- 6011 where the loss of availability or integrity may result in severe or catastrophic adverse impact,
- 6012 which may include impacts on safety and critical service delivery.

6013 SC-51 HARDWARE-BASED PROTECTION

CNTL	CONTROL NAME		UPPLEMENTE TROL BASEL	
NO.	Control Enhancement Name	LOW	MOD	HIGH
SC-51	Hardware-Based Protection			

- 6014 <u>OT Discussion</u>: Some OT systems support write-protection by implementing physical key
- 6015 switches or write-protect switches. Organizations define the systems for which write-protection
- 6016 will be enabled and develop a process for how to take the system out of write-protect mode.

6017 F.7.18 SYSTEM AND INFORMATION INTEGRITY - SI

6018 Tailoring Considerations for the System and Information Integrity Family

- 6019 In situations where the OT cannot support the specific System and Information Integrity
- 6020 requirements of a control, the organization employs compensating controls in accordance with
- the general tailoring guidance. Examples of compensating controls are given with each control,
- as appropriate.

6023 SI-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME	CONTROL BASELINES	INES	
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-1	Policy and Procedures	Select	Select	Select

6024 <u>OT Discussion:</u> The policy specifically addresses the unique properties and requirements of OT 6025 and the relationship to non-OT systems.

6026 SI-2 FLAW REMEDIATION

CNTL		CONTROL BASELINES			
NO.	Control Enhancement Name	LOW MOD	MOD	HIGH	
SI-2	Flaw Remediation	Select	Select	Select	
SI-2 (2)	FLAW REMEDIATION AUTOMATED FLAW REMEDIATION STATUS		Select	Select	

6027 <u>OT Discussion:</u> Flaw remediation, or patching, is complicated since many OT employ OSs and

6028 other software no longer maintained by the vendors. OT operators may also not have the

6029 resources or capability to test patches and are dependent on vendors to validate the operability of

a patch. Sometimes the organization has no choice but to accept additional risk if no vendor

- 6031 patch is available, patching requires additional time to complete validation/testing, or
- 6032 deployment requires an unacceptable operations shutdown. In these situations, compensating
- 6033 controls should be implemented (e.g., limiting the exposure of the vulnerable system, restricting
- 6034 vulnerable services, implementing virtual patching). Other compensating controls that do not
- 6035 decrease the residual risk but increase the ability to respond may be desirable (e.g., provide a
- timely response in case of an incident; devise a plan to ensure the OT can identify the
- 6037 exploitation of the flaw). Testing flaw remediation in an OT may exceed the organization's
- 6038 available resources.
- 6039 <u>Control Enhancement</u>: (2) No OT discussion for this control.

6040 SI-3 MALICIOUS CODE PROTECTION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW MOD	HIGH	
SI-3	Malicious Code Protection	Select	Select	Select

<u>OT Discussion:</u> The use and deployment of malicious code protection is determined after careful
 consideration and after verification that it does not adversely impact the operation of the OT.
 Malicious code protection tools should be configured to minimize their potential impact on the
 OT (e.g., employ notification rather than quarantine). Example compensating controls include
 increased traffic monitoring and auditing.

6046 SI-4 SYSTEM MONITORING

CNTL	CONTROL NAME	CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-4	System Monitoring	Select	Select	Select
SI-4 (2)	SYSTEM MONITORING AUTOMATED TOOLS AND MECHANISMS FOR REAL-TIME ANALYSIS		Select	Select
SI-4 (4)	SYSTEM MONITORING INBOUND AND OUTBOUND COMMUNICATIONS TRAFFIC		Select	Select
SI-4 (5)	SYSTEM MONITORING SYSTEM-GENERATED ALERTS		Select	Select
SI-4 (10)	SYSTEM MONITORING VISIBILITY OF ENCRYPTED COMMUNICATIONS			Select
SI-4 (12)	SYSTEM MONITORING AUTOMATED ORGANIZATION-GENERATED ALERTS			Select
SI-4 (14)	SYSTEM MONITORING WIRELESS INTRUSION DETECTION			Select
SI-4 (20)	SYSTEM MONITORING PRIVILEGED USERS			Select
SI-4 (22)	SYSTEM MONITORING UNAUTHORIZED NETWORK SERVICES			Select

- 6047 OT Discussion: The organization ensures that use of monitoring tools and techniques does not
- 6048 adversely impact the operational performance of the OT. Example compensating controls include
- deploying sufficient network, process, and physical monitoring. 6049
- 6050 Control Enhancement: (2) OT Discussion: In situations where the OT cannot support the use of
- 6051 automated tools to support near-real-time analysis of events, the organization employs
- 6052 compensating controls (e.g., providing an auditing capability on a separate system,
- 6053 nonautomated mechanisms or procedures) in accordance with the general tailoring guidance.
- 6054 Control Enhancement: (4) (10) (12) (14) (20) (22) No OT Discussion for this control.
- 6055 Control Enhancement: (5) OT Discussion: Example compensating controls include manual
- 6056 methods of generating alerts.

6057 SI-5 SECURITY ALERTS, ADVISORIES, AND DIRECTIVES

CNTL	CONTROL NAME	CON	NTROL BASELINES		
NO.	Control Enhancement Name	LOW MOD	MOD	HIGH	
SI-5	Security Alerts, Advisories, and Directives	Select	Select	Select	
SI-5 (1)	SECURITY ALERTS, ADVISORIES, AND DIRECTIVES AUTOMATED ALERTS AND ADVISORIES			Select	

- 6058 OT Discussion: CISA generates security alerts and advisories relative to OT at
- 6059 https://www.cisa.gov/uscert/ics. Industry-specific ISACs often provide tailored advisories and alerts, which can be found at https://www.nationalisacs.org/. 6060
- 6061 Control Enhancement: (1) No OT Discussion for this control.

6062 SECURITY AND PRIVACY FUNCTION VERIFICATION SI-6

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-6	Security and Privacy Function Verification			Select

- 6063 OT Discussion: Shutting down and restarting the OT may not always be feasible upon the 6064 identification of an anomaly; these actions should be scheduled according to OT operational requirements. 6065

6066 SI-7 SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-7	Software, Firmware, and Information Integrity		Select	Select

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SI-7 (1)	SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY INTEGRITY CHECKS		Select	Select	
SI-7 (2)	SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY AUTOMATED NOTIFICATIONS OF INTEGRITY VIOLATIONS			Select	
SI-7 (5)	SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY AUTOMATED RESPONSE TO INTEGRITY VIOLATIONS			Select	
SI-7 (7)	SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY INTEGRATION OF DETECTION AND RESPONSE		Select	Select	
SI-7 (15)	SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY CODE AUTHENTICATION			Select	

6067

- 6068 <u>OT Discussion:</u> The organization determines whether the use of integrity verification
- 6069 applications would adversely impact operation of the ICS and employs compensating controls 6070 (e.g., manual integrity verifications that do not affect performance).
- 6071 <u>Control Enhancements</u>: (1) <u>OT Discussion</u>: The organization ensures that the use of integrity
- 6072 verification applications does not adversely impact the operational performance of the OT.
- 6073 <u>Control Enhancement</u>: (2) <u>OT Discussion</u>: In situations where the organization cannot employ
- 6074 automated tools that provide notification of integrity discrepancies, the organization employs
- 6075 nonautomated mechanisms or procedures. Example compensating controls include performing
- 6076 scheduled manual inspections for integrity violations.
- 6077 <u>Control Enhancement</u>: (5) <u>OT Discussion</u>: Shutting down and restarting the ICS may not always
- 6078 be feasible upon identification of an anomaly; these actions should be scheduled according to 6079 ICS operational requirements.
- 6080 <u>Control Enhancement</u>: (7) <u>OT Discussion</u>: In situations where the ICS cannot detect
- 6081 unauthorized security-relevant changes, the organization employs compensating controls (e.g.,
- 6082 manual procedures) in accordance with the general tailoring guidance.
- 6083 <u>Control Enhancement</u>: (15) <u>OT Discussion</u>: Code authentication provides assurance to the 6084 organization that the software and firmware have not been tampered with. If automated 6085 mechanisms are not available, organizations could verify code authentication by manually using 6086 a combination of techniques including verifying hashes, downloading from reputable sources, 6087 verifying version numbers with the vendor, or testing software/firmware in offline/test 6088 environment.

6089SI-8SPAM PROTECTION

CNTL	CONTROL NAME	CON	TROL BASEL	INES
NO.	Control Enhancement Name	LOW	LOW MOD	HIGH
SI-8	Spam Protection		Select	Select

	CNTL	CONTROL NAME	CONTROL BASELINES		
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	SI-8 (2)	SPAM PROTECTION AUTOMATIC UPDATES		Remove	Remove

6090 <u>OT Discussion</u>: OT organizations implement spam protection by removing spam transport 6091 mechanisms, functions, and services (e.g., electronic mail, web browsing) from the OT.

6092 <u>Rationale for removing SI-8 (2) from MOD and HIGH baselines</u>: Spam transport mechanisms
 6093 are disabled or removed from the OT, so automatic updates are not necessary.

6094 SI-10 INFORMATION INPUT VALIDATION

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	SI-10	Information Input Validation		Select	Select

6095 No OT Discussion for this control.

6096 SI-11 ERROR HANDLING

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-11	Error Handling		Select	Select

6097 No OT Discussion for this control.

6098 SI-12 INFORMATION MANAGEMENT AND RETENTION

	CNTL	CONTROL NAME	CONTROL BASELINES			
	NO.	Control Enhancement Name	LOW	MOD	HIGH	
	SI-12	Information Management and Retention	Select	Select	Select	

6099 No OT Discussion for this control.

6100 SI-13 PREDICTABLE FAILURE PREVENTION

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-13	Predictable Failure Prevention			Add

6102 Rationale for adding SI-13 control to HIGH baseline: OT are designed and built with certain 6103 boundary conditions, design parameters, and assumptions about their environment and mode of 6104 operation. OT may run much longer than conventional systems, allowing latent flaws to become 6105 effective that are not manifest in other environments. For example, integer overflow might never 6106 occur in systems that are re-initialized more frequently than the occurrence of the overflow. 6107 Experience and forensic studies of anomalies and incidents in OT can lead to identification of 6108 emergent properties that were previously unknown, unexpected, or unanticipated. Preventative 6109 and restorative actions (e.g., restarting the system or application) are prudent but may not be 6110 acceptable for operational reasons in OT.

6111 SI-16 MEMORY PROTECTION

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.		LOW	MOD	нідн
SI-16	Memory Protection		Select	Select

6112 No OT Discussion for this control.

6113 SI-17 FAIL-SAFE PROCEDURES

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-17	Fail-Safe Procedures	<u>Add</u>	<u>Add</u>	<u>Add</u>

6114 <u>OT Discussion:</u> The selected failure conditions and corresponding procedures may vary among

6115 baselines. The same failure event may trigger different responses, depending on the impact level.

6116 Mechanical and analog systems can be used to provide mechanisms to ensure fail-safe

- 6117 procedures. Fail-safe states should incorporate potential impacts to human safety, physical
- 6118 systems, and the environment. Related controls: CP-6.

6119 Rationale for adding SI-17 to LOW, MOD and HIGH baselines: This control provides a structure

6120 for the organization to identify its policy and procedures for dealing with failures and other

6121 incidents. Creating a written record of the decision process for selecting incidents and

6122 appropriate response is part of risk management in light of changing environment of operations.

6123 SI-22 INFORMATION DIVERSITY

CNTL	CONTROL NAME	SUPPLEMENTED CONTROL BASELINES		
NO.	Control Enhancement Name	LOW	MOD	HIGH
SI-22	Information Diversity			

- 6124 OT Discussion: Many OT systems use information diversity in their design in order to achieve
- 6125 reliability requirements. Some examples of information diversity for an OT system include
- 6126 sensor voting and state estimation.

6127 F.7.19 SUPPLY CHAIN RISK MANAGEMENT - SR

6128 SR-1 POLICY AND PROCEDURES

CNTL	CONTROL NAME	CONTROL BASELINES		INES
NO.	Control Enhancement Name	LOW MOD	HIGH	
SR-1	Policy and Procedures	Select	Select	Select

6129 OT Discussion: Supply chain policy and procedures for OT should consider components

- 6130 received as well as components produced. Many OT systems use legacy components that cannot
- 6131 meet modern supply chain expectations. Appropriate compensating controls should be developed
- 6132 to achieve organization supply chain expectations for legacy systems.

6133 SR-2 SUPPLY CHAIN RISK MANAGEMENT PLAN

CNTL	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
NO.		LOW	MOD	HIGH
SR-2	Supply Chain Risk Management Plan	Select	Select	Select
SR-2 (1)	SUPPLY CHAIN RISK MANAGEMENT PLAN ESTABLISH SCRM TEAM	Select	Select	Select

6134 No OT Discussion for this control.

6135 SR-3 SUPPLY CHAIN CONTROLS AND PROCESSES

CNTL	CONTROL NAME Control Enhancement Name	SUPPLEMENTED CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SR-3	Supply Chain Controls and Processes	Select	Select	Select	
SR-3 (1)	SUPPLY CHAIN CONTROLS AND PROCESSES DIVERSE SUPPLY BASE				

- 6136 No OT Discussion for this control.
- 6137 <u>Control Enhancement:</u> (1) <u>OT Discussion:</u> Using a diverse set of suppliers in the OT
- 6138 environment can improve reliability by reducing common cause failures. This is not always
- 6139 possible, since some technologies have limited supply options that meet the operational
- 6140 requirements.

6141 SR-5 ACQUISITION STRATEGIES, TOOLS, AND METHODS

CNTL		SUPPLEMENTED CONTROL BASELINES			
NO.		LOW	MOD	HIGH	
SR-5	Acquisition Strategies, Tools, and Methods	Select	Select	Select	
SR-5 (1)	ACQUISITION STRATEGIES, TOOLS, AND METHODS ADEQUATE SUPPLY		Add	<u>Add</u>	

- 6142 No OT Discussion for this control.
- 6143 <u>Control Enhancement:</u> (1) <u>OT Discussion</u>: Vendor relationships and spare parts strategies are
- 6144 developed to ensure an adequate supply of critical components is available to meet operational 6145 needs.
- 6146 <u>Rationale for adding SR-5 (1) to MOD and HIGH baselines:</u> OT systems and system components
- 6147 are often built-for-purpose, with a limited number of vendors/suppliers of a specific component.
- 6148 Organizations identify critical OT system components and controls to ensure an adequate supply
- 6149 in the event of supply chain disruptions.

6150 SR-6 SUPPLIER ASSESSMENTS AND REVIEWS

	CNTL	CONTROL NAME	CONTROL BASELINES		INES
	NO.	Control Enhancement Name	LOW	MOD	HIGH
	SR-6	Supplier Assessments and Reviews		Select	Select

6151 No OT Discussion for this control.

6152 SR-8 NOTIFICATION AGREEMENTS

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
SR-8	Notification Agreements	Select	Select	Select

6153 No OT Discussion for this control.

6154 SR-9 TAMPER RESISTANCE AND DETECTION

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES			
		LOW	MOD	HIGH	
SR-9	Tamper Resistance and Detection			Select	
SR-9 (1)	TAMPER RESISTANCE AND DETECTION MULTIPLE STAGES OF SYSTEM DEVELOPMENT LIFE CYCLE			Select	

6155 No OT Discussion for this control.

6156 SR-10 INSPECTION OF SYSTEMS OR COMPONENTS

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
SR-10	Inspection of Systems or Components	Select	Select	Select

6157 No OT Discussion for this control.

6158 SR-11 COMPONENT AUTHENTICITY

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
SR-11	Component Authenticity	Select	Select	Select
SR-11 (1)	COMPONENT AUTHENTICITY ANTI-COUNTERFEIT TRAINING	Select	Select	Select
SR-11 (2)	COMPONENT AUTHENTICITY CONFIGURATION CONTROL FOR COMPONENT SERVICE AND REPAIR	Select	Select	Select

6159 No OT Discussion for this control.

6160 SR-12 COMPONENT DISPOSAL

CNTL NO.	CONTROL NAME Control Enhancement Name	CONTROL BASELINES		
		LOW	MOD	HIGH
SR-12	Component Disposal	Select	Select	Select