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Quantum Neural Networks (QNNs) are a promising variational learning paradigm with applica-
tions to near-term quantum processors, however they still face some significant challenges. One
such challenge is finding good parameter initialization heuristics that ensure rapid and consistent
convergence to local minima of the parameterized quantum circuit landscape. In this work, we train
classical neural networks to assist in the quantum learning process, also know as meta-learning, to
rapidly find approximate optima in the parameter landscape for several classes of quantum varia-
tional algorithms. Specifically, we train classical recurrent neural networks to find approximately
optimal parameters within a small number of queries of the cost function for the Quantum Ap-
proximate Optimization Algorithm (QAOA) for MaxCut, QAOA for Sherrington-Kirkpatrick Ising
model, and for a Variational Quantum Eigensolver for the Hubbard model. By initializing other
optimizers at parameter values suggested by the classical neural network, we demonstrate a signifi-
cant improvement in the total number of optimization iterations required to reach a given accuracy.
We further demonstrate that the optimization strategies learned by the neural network generalize
well across a range of problem instance sizes. This opens up the possibility of training on small,
classically simulatable problem instances, in order to initialize larger, classically intractably simulat-
able problem instances on quantum devices, thereby significantly reducing the number of required
quantum-classical optimization iterations.

I. INTRODUCTION

With the advent of noisy intermediate-scale quantum
(NISQ) devices [1], there has been a growing body of
work [1–24] aiming to develop algorithms which are suit-
able to be run in this near-term era of quantum com-
puting. A particularly promising category of such al-
gorithms are the so-called quantum-classical variational
algorithms [4, 9], which involve the optimization over a
family of parameterized quantum circuits using classical
optimization techniques (see Fig. 1). These variational
algorithms are promising because they have flexible ar-
chitectures, are adaptive in nature, can be tailored to fit
the gate allowances of near-term quantum devices, and
are partially robust to systematic noise.

Many quantum-classical variational algorithms consist
of optimizing the parameters of a parameterized quan-
tum circuit to extremize a cost function (often consisting
of the expectation value of a certain observable at the
output of the circuit). This optimization of parameter-
ized functions is similar to the methods of classical deep
learning with neural networks [25–27]. Furthermore, the
training and inference processes for classical deep neural
networks have been shown to be embeddable into this
quantum-classical PQC optimization framework [5, 28].
Given these connections, it has become common to some-
times refer to certain PQC ansatze as Quantum Neural

Networks [2, 7, 23, 29] (QNN’s).

Optimization of QNN’s in the NISQ era is currently
faced with two main challenges. The first is local opti-

mization; the stochastic nature of the objective function
in combination with readout complexity considerations
has made direct translation of classical local optimiza-
tion algorithms challenging. Proposed gradient-based
optimizers either rely on a quantum form of backpropa-
gation of errors [28] that requires additional gate depth
and quantum memory, or use finite-di↵erence gradients
[2, 23] which typically require numerous quantum circuit
evaluations for each gradient descent iteration. Recent
works have proposed sampling analytic gradients [30, 31]
to reduce this cost. However, these approaches also re-
quire many measurement runs and consequently remain
expensive, and further advances are needed in this area.

The second major challenge for QNN optimization
is parameter initialization. Although there have been
some proposals for QNN parameter initialization heuris-
tics [8, 32, 33], we believe there is a need for more e�cient
and more flexible variants of such heuristics. By initializ-
ing parameters in the neighborhood of a local minimum
of the cost landscape, one ensures more consistent local
optimization convergence in a fewer number of iterations
and a better overall answer with respect to the global
landscape. Good initialization is thus crucial to promote
the convergence of local optimizers to local extrema and
to select reasonably good local minima.

In this paper, we tackle the second problem of pa-
rameter initialization by exploring methods that lever-
age classical neural networks trained to optimize con-
trol parameters of parametrized quantum circuits. Tak-
ing inspiration from the growing body of work on meta-
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learning, also known as learning to learn [34–38], we use
a classical recurrent neural network (RNN) as a black-
box controller to optimize the PQC parameters directly,
as shown in Figure 2. We train this RNN using random
problem instances from specific classes of problems. We
explore the performance of this approach for the following
problem classes: quantum approximate optimization al-
gorithm (QAOA) for MaxCut [3], QAOA for Sherrington-
Kirkpatrick Ising models [32], and a Variational Quan-
tum Eigensolver (VQE) ansatz for the Hubbard model
[6, 39, 40].

Through numerical simulations, we show that a re-
current neural network trained to optimize small quan-
tum neural networks can learn parameter update heuris-
tics that generalize to larger system sizes and problem
instances, while still outperforming other initialization
strategies at this scale. This opens up the possibility of
classically training RNN optimizers for specific problem
classes using instances of classically simulatable QNN’s
with reasonable system sizes as training data. After this
training is done, these RNN optimizers could then be
used on problem instances with QNN’s whose system
sizes are beyond the classically simulatable regime.

For reasons explained further in sections III C, we use
the RNN as a few-shot global approximate optimizer,
which is used to initialize a local optimizer, such as
Nelder-Mead [41–43]. In principle, the neural network
could initialize any other local optimizer (such as SPSA
[44], BOBYQA [45], and many others [46]), however, the
focus of this paper is not to benchmark and compare var-
ious options for local optimizers. We have found that
our approach compares favorably over other standard
parameter initialization methods for all local optimizers
studied. To the authors’ knowledge, this work is a first
instance where meta-learning techniques have been suc-
cessfully applied to enhance quantum machine learning
algorithms.

II. QUANTUM-CLASSICAL META-LEARNING

A. Variational Quantum Algorithms

Let us first briefly review the theory of variational
quantum algorithms, and how one can view the hybrid
quantum-classical optimization process as a hybrid com-
putational graph. Variational quantum algorithms are
comprised of an iterative quantum-classical optimization
loop between a classical processing unit (CPU) and a
quantum processing unit (QPU), pictured in Figure 1.

An iteration begins with the CPU sending the set of
candidate parameters ✓ to the QPU. The QPU then exe-
cutes a parameterized circuit Û(✓), which outputs a state
| ✓i. For the types of QNN of interest in this work,
namely QAOA [3] and VQE [4], the function to be opti-
mized is the expectation value of a certain Hamiltonian
operator f(✓) ⌘ h ✓| Ĥ | ✓i. We will refer to this func-
tion to as the cost function of the variational quantum

Figure 1. Unrolling the temporal quantum-classical hybrid
computational graph of a general hybrid variational quantum
algorithm. At the t

th optimization iteration, the CPU is fed
the previous iterations’ parameters ✓t, and the expectation
value of the Hamiltonian at the previous step yt = hĤi✓t

, it
also has access to its own internal memory mt. A classical
optimization algorithm then suggest a new set of parameters
✓t, which is fed to the QPU. The QPU then executes multiple
runs to obtain yt+1, the expectation value of the cost Hamil-
tonian at the output of the parameterized quantum circuit
evaluated at these given parameters.

algorithm, defined by the cost Hamiltonian. The expec-
tation value of the cost Hamiltonian hĤi✓ ⌘ h ✓| Ĥ | ✓i

is estimated using the quantum expectation estimation
procedure [47] via many repeated runs of the QPU. Fol-
lowing this, the estimated expectation value is relayed
back to the CPU, where the classical optimizer running
on the CPU is then tasked with suggesting a new set of
parameters for the subsequent iteration [48].
From an optimization perspective, the CPU is given a

parametrized black-box function f : Rm
! R for which it

is tasked to find a set of parameters minimizing this cost
function ✓⇤ = argmin✓2Rm f(✓). In many cases, finding
an approximate minimum is su�cient. Typically, one
must consider this function to have a stochastic output
which serves as a noisy unbiased estimate (under some
assumptions) of the true output value of the function we
are ultimately trying to optimize. Optimizing this out-
put rapidly and accurately, despite only having access
to noisy estimates poses a significant challenge for varia-
tional quantum algorithms.
Even for perfect quantum gates and operations, for

a finite number of measurement runs, there is inherent
noise in the quantum expectation estimate [47]. Usually
when performing quantum expectation estimation, the
cost Hamiltonian can be expressed as a linear combina-
tion of k-local Pauli’s, Ĥ =

P
N

j=1 ↵jP̂j , where the ↵j ’s

are real-valued coe�cients and the P̂j ’s are Paulis that
are at most k-local [49]. The measurement of expecta-
tions of k-local Pauli observables is fairly straightforward
[9], while the linear combination of expectation values
is done on the classical device. For a Hamiltonian Ĥ

with such a decomposition, we define its Pauli coe�cient

norm, denoted kĤk⇤, as the one-norm of the vector of
coe�cients in its Pauli decomposition, namely kĤk⇤ ⌘

k↵k1 =
P

N

j=1 |↵j |. For such Hamiltonians, the expected
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number of repetitions is bounded by ⇠ O(kĤk
2
⇤/✏

2) to
get an estimate that is accurate within ✏ from the unbi-
ased value with a desired probability [6, 50].

Finally, note that the quantum-classical optimization
loop can be unrolled over time into a single temporal
quantum-classical computational graph, as depicted in
Figure 1. This hybrid computational graph can be con-
sidered as hybrid quantum-classical neural networks. We
developed methods to propagate gradients through such
hybrid computational graph using reverse-mode auto-
di↵erentiation, also known as backpropagation [51, 52].
We achieve this by converting hybrid quantum-classical
backpropagation methods from previous work [28], origi-
nally formulated for quantum optimizers, to a form suit-
able for classical optimizers, which are most relevant for
the NISQ era and are our focus in this paper. Dur-
ing the writing of this paper, other works have also
employed hybrid quantum-classical backpropagation for
various quantum machine learning tasks [30, 53].

B. Meta-learning with Neural Optimizers

Meta-learning, also called learning to learn [34, 35],
consists of a set of meta-optimization techniques which
aim to learn how to modify the parameters (or hyperpa-
rameters) of learning algorithms to further tailor them for
a specific purpose. This could be to ensure that the learn-
ing generalizes well (minimizes test set error), to better
fit the given data in less iterations (minimize training
set error) [35], or to perform transfer learning (adapt a
pre-trained neural network to a new task) [37, 54]. In
recent years, there have been many new works in the
meta-learning literature [34, 35, 37, 54, 55], and we aim
to transfer some of the tools developed in the context
of classical deep learning to quantum variational algo-
rithms.

Our aim will be to train a classical optimizer neural
network to learn parameter update heuristics for opti-

mizee quantum neural networks. As mentioned previ-
ously, for our QNN’s of interest, the cost function to be
optimized is the expectation value of a certain Hamilto-
nian operator Ĥ, with respect to a parameterized class of
states | ✓i output by a family of parametrized quantum
circuits; f(✓) = hĤi✓. To emulate the statistical noise
of quantum expectation estimation, we will this assume
that the optimizer is fed noisy unbiased estimates of the
QNN cost function at test time.

In many studies of meta-learning [35], it is assumed
that this black box (in our case a QNN) is di↵eren-
tiable and that the learner has oracular access to the
gradients of the function with respect to its parameters,
rf(✓). Since precise gradient estimations on NISQ de-
vices are hampered by the large number of runs required
and by the noise of the device, we focus on the case where
the learner will only have access to black box function
queries at test time. We will, however, use gradients for
neural optimizer network training. This access to gra-

Figure 2. Unrolled temporal quantum-classical computational
graph for the meta-learning optimization of the recurrent neu-
ral network (RNN) optimizer and a quantum neural network
(QNN). This graph is similar to the general VQA graph in
Figure 1, except that the memory of the optimizer is en-
coded in the hidden state of the RNN h, and we represent
the flow of data used to evaluate the meta-learning loss func-
tion. This meta loss function L is a functional of the history
of expectation value estimate samples y = {yt}T

t=1, and is
thus indirectly dependent on the RNN parameters '. We see
that backpropagating from the meta-loss node to the RNN’s
necessitates gradients to pass through the QNN.

dients during training is not strictly necessary, but can
speed up training in some cases. Note that gradients of
hybrid quantum-classical computational graphs can be
obtained by backpropagation (automatic di↵erentiation)
when simulating quantum circuits, or by using techniques
for backpropagation through black boxes [56], or hybrid
quantum-classical backpropagation [28, 30].
To choose an architecture for the optimizer network,

we interpret the QNN parameters and cost function
evaluations over multiple quantum-classical iterations as
a sequence-to-sequence learning problem. A canonical
choice of neural network architecture for processing such
sequential data is a recurrent neural network (RNN)
[57, 58]. Generally speaking, a recurrent neural network
is a network where, for each item in a sequence, the net-
work accepts an input vector, produces an output vector,
and potentially keeps some data in memory for use with
subsequent items. The computational graph of a RNN
usually consists of many copies of the network, each shar-
ing the same set of parameters, and each representing a
time step. The recurrent connections, which can be inter-
preted as self-connections representing the data flow over
time, can be represented as a connections between copies
of the network representing subsequent time steps. In
this way, the computational graph can then be pictured
in an unrolled form, as depicted in Figure 2. A particu-
lar type of RNN architecture which has had demonstrable
successes over other RNN architectures is the Long Short
Term Memory Network (LSTM) [59]. The LSTM owes
its successes to its internal tunable mechanisms which, as
its name implies, allow it to identify both long-term and
short-term dependencies in the data.
The meta-learning neural network architecture used

in this paper is depicted in Figure 2, there, an LSTM
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recurrent neural network is used to recursively propose
updates to the QNN parameters, thereby acting as the
classical black-box optimizer for quantum-classical opti-
mization. At a given iteration, the RNN receives as input
the previous QNN query’s estimated cost function expec-
tation yt ⇠ p(y|✓t), where yt is the estimate of hĤi

t
, as

well as the parameters for which the QNN was evaluated
✓t. The RNN at this time step also receives information
stored in its internal hidden state from the previous time
step ht. The RNN itself has trainable parameters ', and
hence it applies the parameterized mapping

ht+1,✓t+1 = RNN'(ht,✓t, yt) (1)

which generates a new suggestion for the QNN param-
eters as well as a new hidden state. Once this new set
of QNN parameters is suggested, the RNN sends it to
the QPU for evaluation and the loop continues. Note
that this specific meta-learning architecture was adapted
from previous work [34], where the task of ‘learning to
learn without gradient descent by gradient descent’ was
considered.

The QNN architectures we chose to focus on were
part of a class of ansatze known as Quantum Alter-
nating Operator Ansatze [10], which are generaliza-
tions of the Quantum Approximate Optimization Al-
gorithm [3]. These ansatze can be interpreted as a
method for variationally-optimized bang-bang-controlled
quantum-dynamical evolution in an energy landscape
[3, 28, 60, 61]. In this case, the QNN’s variational pa-
rameters are the control parameters of the dynamics, and
by appropriately tuning these parameters via quantum-
classical optimization, one can cause the wavefunction
to e↵ectively descend the energetic landscape towards
lower-energy regions. In recent works [28, 61], explicit
connections between these quantum-dynamical control
parameters and the hyperparameters of gradient descent
algorithms were established for the continuum-embedded
variants of QAOA. Thus, one can interpret these QAOA
parameters as analogous to the hyperparameters of a
quantum form of energetic landscape descent. In a re-
cent work in classical meta-learning [35], the authors use
a RNN to control the hyperparameters of a neural net-
work gradient-based training algorithm, drastically im-
proving the neural networks training time and quality
of fit when compared to stochastic gradient descent. It
is thus natural to consider using an RNN to optimize
QAOA parameters, given the above intuition about their
analogous relation to gradient descent hyperparameters.
Another reason for choosing this particular type of QNN
is that the number of variational parameters in these
ansatze do not depend on the system size, only on the
number of alternating operators. This means we can use
this approach to train our RNN on smaller QNN instance
sizes for certain problems, then test for generalization on
larger QNN instance sizes.

Before we dive further into the specific quantum-
classical meta-learning experiments, we will provide fur-
ther details on how one would train an RNN to optimize

such QNN’s.

1. Meta-Training & Loss functions

The objective of quantum-classical meta-learning is to
train our RNN to learn an e�cient parameter update
scheme for a family of cost functions of interest, i.e., to
discover an optimizer which e�ciently optimizes a cer-
tain distribution of optimizees, on average. We consider
an e�cient optimizer to be one which finds su�ciently
optimal approximate local minima of cost functions in as
few function queries as possible. What qualifies as su�-
ciently optimal will depend on the class of problems at
hand and the domain of application of interest.
In the original work by DeepMind [34], the neural op-

timizer was to be used as a general optimizer; little to no
assumptions were made about the optimizee (the network
being optimized) apart from the dimension of the param-
eter space. The optimizer network was to be trained on
one ‘data set’ of optimizees, yet had to be applicable to
a wide array of optimizees previously unseen. To learn
such a general optimization strategy, the optimizer RNN
was trained on random instances of a fairly general dis-
tribution of functions, namely, functions sampled from
Gaussian processes [62].
Since we are focused on QNN optimization landscapes

which are known to di↵er from classical Gaussian pro-
cess optimization landscapes [29] we instead aimed to
train specialized neural optimizers that are tailored to
specific classes of problems and QNN ansatze. To ex-
plore how e↵ective this is, we trained our RNN on ran-
dom QNN instances within a targeted class of problems,
namely QAOA and VQE, and tested the trained net-
work on (larger) previously unseen instances from their
respective classes. In Section III, we describe in greater
detail the various classes of problems and corresponding
ansatze which were considered for training and testing.
Given a distribution of optimizees of interest, we must

choose an adequate meta-learning loss function L(')
with respect to which we will want to optimize the RNN
parameters '. For a given QNN with cost function
f(✓) = hĤi✓, we know that the RNN’s meta-learning
loss function L(') will generally be dependent on the
estimated cost function (quantum expectation estimate)
history {Ef,y[f(✓t)]}Tt=1, but there is some flexibility in
choosing exactly what this dependence is. Choosing the
appropriate meta-learning loss function for the task at
hand can be tricky, and depends on what is the particu-
lar application of the QNN. To be most general, we will
want to pick a loss function which can learn to rapidly
find optima of the parameter landscape yet is still con-
stantly driven to find higher quality optima.
A simple choice of meta-learning loss function would be

to use the expected final cost value at the end of the op-
timization time horizon, averaged over our samples from
our distribution of functions f , i.e., L(') = Ef,yT [f(✓T )].
In practice, this is a sparse signal, and would require

Codepanel
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backpropagation through a large portion of the compu-
tational graph for the loss signal to reach early portions
of the RNN graph. A practical option of the same vein
is the cumulative regret, which is simply the sum of the
cost function history uniformly averaged over the time
horizon L(') =

P
T

t=1 Ef,y[f(✓t)]. This is a better choice
as the loss signal is far less sparse, and the cumulative
regret is a proxy for the minimum value achieved over the
optimization history. In practice, this loss function may
not be optimal as it will prioritize rapidly finding an ap-
proximate optimum and staying there. What is needed
instead is a loss function that encourages exploration of
the landscape in order to find a better optimum. The loss
function we chose for our experiments is the observed im-

provement at each time step, summed over the history of
the optimization:

L(') = Ef,y


TP

t=1
min{f(✓t) � minj<t[f(✓j)], 0}

�
, (2)

The observed improvement at time step t is given by
the di↵erence between the proposed value, f(✓t), and
the best value obtained over the past history of the op-
timization until that point, minj<t[f(✓j)]. If there is no
improvement at a given time step then the contribution
to the loss is nil. However, a temporary increase of the
cost function followed by a significant improvement over
the historical best will be rewarded rather than penal-
ized (in contrast to the behavior of the cumulative regret
loss).

In order to train the RNN, we need to di↵erentiate
the above loss function L('). One option to achieve this
is via backpropagation of gradients through the unrolled
RNN graph (depicted in Fig. 2). This approach is called
backpropagation through time, and can be tricky to scale
to arbitrarily deep networks due to vanishing/exploding
gradient problems [58]. For practical purposes, a small
time horizon is preferable, as it limits the complexity
of the training of the RNN optimizer and avoids the
pathologies of backpropagation through long time hori-
zons. Since our loss function L(') is dependent on the
QNN evaluated at multiple di↵erent parameter values
{✓t}Tt=1, in order to perform backpropagation through
time we need to backpropagate gradients through multi-
ple instances of the QNN.

As our approach was backpropagation-based, to avoid
problems of gradient blowup and to minimize the com-
plexity of training, we keep a small time horizon for our
numerical experiments featured in Section III C. As such,
our RNN optimizer is intended to only run for a fixed
number of iterations, and will be used as an initializer for
other optimizers that perform local search. In principle,
one could let the RNN optimize over more iterations at
inference time than it was originally trained for, though
the performance for later iterations may su↵er. In our
case the output of the RNN optimizer after a fixed num-
ber of iterations is used to initialize the parameters of the
QNN’s near a typical optimal set of parameters. It has
been observed [32], and in some cases formally proven

[63], that QAOA-like ansatze have a concentration of op-
timal parameters. Thus, the neural optimizer is used to
learn a problem-class-specific initialization heuristic, and
the fine-tuning is left for other optimizers. Since the neu-
ral optimizer would eventually learn a local heuristic for
the fine-tuning, the added complexity cost of training for
long time horizons if not justified by corresponding im-
provements in optimization e�ciency, and we find that
the combination of the neural optimizer as initializer and
a greedy heuristic such as Nelder-Mead works quite well
in practice, as shown in Figure 3. Now, let us cover which
ansatze we applied our RNN to learn to optimize.

III. NUMERICAL EXPERIMENTS

In this section, we provide a brief overview of the quan-
tum neural network ansatze and problem instances con-
sidered for the hybrid meta-learning numerical experi-
ments (results presented in Section III C). We trained
and tested di↵erent ‘specialist’ RNN optimizers for each
of these three problem classes: quantum approximate op-
timization for MaxCut (MaxCut QAOA), quantum ap-
proximate optimization for Sherrington-Kirkpatrick Ising
models [32] (Ising QAOA), and a Trotter-based varia-
tional quantum eigensolver ansatz for the Hubbard model
[39] (Hubbard VQE). We provide a brief introduction to
each of these three classes, as well as describe the dis-
tribution of instances from these classes from which we
sampled to generate training and testing instances.

A. Quantum Approximate Optimization

Algorithms

Let us first introduce a general QAOA ansatz before
we specialize to applications to MaxCut problems and
Ising (Sherrington-Kirkpatrick; SK) Hamiltonians. The
goal of the QAOA is to prepare low-energy states of a cost
Hamiltonian ĤC , which is usually a Hamiltonian which is
diagonal in the computational basis. To achieve this, we
typically begin in an eigenstate of a mixer Hamiltonian

ĤM , which does not commute with the cost Hamilto-
nian; [ĤC , ĤM ] 6= 0. Applied onto this initial state is a
sequence of exponentials of the form

Û(✓) =
PY

j=1

e
�i✓

(j)
m ĤM e

�i✓
(j)
c ĤC , (3)

where ✓ = {✓m,✓c} are variational parameters to be op-
timized. Note that in the above and throughout this
paper we will use the operator product notation conven-
tion where

Q
M

j=1 Ûj = ÛM . . . Û1. The objective func-
tion for this optimization is simply the expectation of
the cost Hamiltonian after applying Û(✓) to the initial
state. This sequence of exponentials is the quantum al-
ternating operator ansatz [3, 10]. This is an algorithm
which is well-suited for the NISQ era as the number of
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gates scales linearly with P , the exponentials of ĤM and
ĤC are usually easy to compile without any need for ap-
proximation via Trotter-Suzuki decomposition [64]. The
cost Hamiltonian is typically a sum of terms that are
diagonal in the computational basis and often simple to
compile. Furthermore, there is no need to split the quan-
tum expectation estimation over multiple runs in order
to estimate the various terms; each repetition yields an
estimate of the cost function directly.

Now that we have introduced the general QAOA ap-
proach, we can explore the specialization of the QAOA
to two specific domains of application; namely, Max-
Cut QAOA and QAOA for Sherrington-Kirkpatrick Ising
models.

1. MaxCut QAOA

The problem for which the QAOA was first explored
was for MaxCut [3]. Let us first provide a brief introduc-
tion to the MaxCut problem. Suppose we have a graph
G = {V, E} where E are the edges and V the vertices.
Given a partition of these vertices into a subset P0 and
its complement P1 = V \ P0, the corresponding cut set

C ✓ E is the subset of edges that have one endpoint in P0

and the other endpoint in P1. The maximum cut (Max-
Cut) for a given graph G is the choice of P0 and P1 which
yields the largest possible cut set. The di�culty of find-
ing this partition is well known to be an NP-Complete
problem in general.

To translate this problem to a quantum Hamiltonian,
we can assign a qubit to each vertex j 2 V. The compu-
tational basis states of these qubits can then be used as
binary labels to indicate which partition each qubit is in,
i.e., if the qubit j is in the state |li

j
, l 2 {0, 1}, we assign

it to the partition Pl. We can evaluate the size of a cut
by counting how many edges have endpoints in di↵erent
partitions. In order to do this counting, we can compute
the XOR of the bit values for the endpoints of each edge
and add up these clauses. This cut cardinality can thus
be encoded into the cost Hamiltonian for the QAOA as
follows:

ĤC =
X

{j,k}2E

1
2 (Î � ẐjẐk). (4)

Now, for our choice of mixer, the standard choice is the
sum of Pauli X̂ on each qubit, ĤM =

P
j2V X̂j . This is

a good choice as each term is non-commuting with the
cost Hamiltonian and it is easy to exponentiate with min-
imal gate depth. The standard choice of initial state is
the uniform superposition over computational bitstrings
|+i

⌦|V|, which is an eigenstate of the mixer Hamiltonian.
We can now construct our ansatz following (3) by choos-
ing some value for P and substituting in our MaxCut
ĤC and ĤM . By applying and variationally optimiz-
ing the QAOA, one obtains a wavefunction which, when
measured in the computational basis, has a high proba-

bility of yielding a bitstring corresponding to a partition
of large cut size [3].
In order to train and test the RNN optimizer on Max-

Cut QAOA problems, we generated random problem in-
stances in the following fashion: we first fixed an integer
n, and then randomly sampled an integer uniformly from
the range k 2 [3, n � 1]. Finally, we tossed a random
graph from Gn,p with p = k/n and constructed the cor-
responding MaxCut QAOA QNN of the form of (3) for
P = 2. Note that a random Gn,p graph is a graph on
n nodes where an edge between any two nodes is added
independently with probability p. To generate training
data, we uniformly sampled n 2 [6, 9], yielding QNN sys-
tem sizes of at most nine qubits. To train the RNN, 10000
sampled instances from this training set were used. To
generate our testing data, we fixed n = 12, yielding QNN
system sizes of 12 qubits, and sampled 50 instances using
the procedure described above.
It has been observed that for random 3-regular graphs,

at fixed parameter values of the QAOA ansatz, the ex-
pected value of the cost function hĤCi✓ concentrates [63].
Our results displayed in Figures 3 and III C corroborate
this finding while operating on a slightly broader ensem-
ble of random graphs. This is made clear by noting that
initially the MaxCut QAOA has a much narrower 95%
confidence interval across problem instances regardless
of optimization algorithm when compared to Ising (SK)
QAOA.

2. Ising QAOA

Another domain of application where we tested
quantum-classical meta-learning was with the QAOA for
finding low energy states of a type of Ising spin glass
model known as the Sherrington-Kirkpatrick (SK) model.
Many problems in combinatorial optimization can be
mapped to these models [65] (for example, training Boltz-
mann machine neural networks [24, 66]). In general,
finding the lowest energy state of such models is known
to be NP-Hard. Using the QAOA, we aim to find low-
energy states of an SK Ising Hamiltonian on the graph
G = {V, E}, which has the form

ĤC = 1p
n

X

{j,k}2E

JjkẐjẐk +
X

j2V
hjẐj (5)

where n = |V| is the number of vertices, and Jjk and
hj are coupling and bias coe�cients. For our numeri-
cal experiments we considered only the case of the fully
connected model where G is the complete graph. Like
the MaxCut QAOA, the choice of mixer Hamiltonian
is the sum of the transverse field on all the qubits,
ĤM =

P
j
X̂j , and the initial state is chosen as a uniform

superposition over all computational basis states |+i
⌦n.

The parametric ansatz is once again in the form of a regu-
lar QAOA (as in (3)), now with the SK Ising Hamiltonian
(5) as the cost Hamiltonian. In similar fashion to Max-
Cut, when we optimize the parameters for this QAOA,

Ok
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we obtain a wavefunction which, when measured in the
computational basis, will yield a bit string corresponding
to a spin configuration with a relatively low energy.

Let us now outline the methods used to generate the
training and testing data for the RNN specializing in the
optimization of Ising QAOA ansatz parameters. To gen-
erate random instances of Ising QAOA, we sampled ran-
dom values of Jjk, hj and n. For both the training and
testing data, after drawing a value for n, the parameters
Jij and hi were drawn from independent Gaussian dis-
tributions with zero mean and unit variance. Finally, we
constructed the corresponding Ising QAOA QNN ansatze
of the form (3) with P = 3 for the sampled Hamiltonian.
For the training instances, we sampled the number of
qubits uniformly from n 2 [6, 8], yielding QNN system
sizes of at most 8 qubits. The size of the training set
was of 10000 instances from the above described distri-
bution. For testing, we drew 50 samples uniformly from
n 2 [9, 11], thus testing was done with strictly larger in-
stances than those contained in the training set.

B. Variational Quantum Eigensolvers

1. Hubbard Model VQE

Here we describe the variational quantum eigensolver
(VQE) ansatze that were used to generate the results in
Fig. 3. The specific class of VQE problems we chose to
consider were for variational preparation of ground states
of Hubbard model lattices [39]. The Hubbard model is
an idealized model of fermions interacting on a lattice.
The 2D Hubbard model has a Hamiltonian of the form
Ĥ = T̂h + T̂v + V̂ , where T̂h and T̂v are the horizontal
and vertical hopping terms and V̂ a spin interaction term,
more explicitly,

Ĥ = �t

X

hi,ji,�

(â†
i,�

âj,� + â
†
j,�

âi,�) + U

X

i

â
†
i,"âi,"â

†
i,#âi,#

(6)
where the âj,� and â

†
j,�

are annihilation and creation
operators on site j with spin � 2 {", #}. The goal of
the VQE is to variationally learn a parametrized circuit
which prepares the ground state of the Hubbard Hamil-
tonian from (6), or at least an approximation thereof.

Our variational ansatz to prepare these approximate
ground states is based on the Trotterization of the time
evolution under the Hubbard model Hamiltonian, it is of
the form

Û(✓) =
PY

j=1

e
�i✓

(j)
h T̂he

�i✓
(j)
v T̂ve

�i✓
(j)
U V̂ (7)

where ✓ = {✓h,✓v,✓U} are the variational parameters
for the P Trotter steps. The exponentials at each step
are done using a single fermionic swap network [39]. This
is similar to the ansatz used in [6] but corresponds to a
di↵erent order of simulation of the terms.

Let us provide more details as to our choices of pa-
rameters used to generate the results from Figure 3. We
used an ansatz consisting of P = 5 steps, where each step
introduced 3 parameters. For our initial state, we use an
eigenstate of the kinetic term with the correct particle
number and the same total spin as the ground state, and
we study the model at half-filling. We set t = 1.0 for
all instances, and this defines our units of energy. Our
training data consists of 10000 instances with the lattice
system size chosen to be either n = 2 ⇥ 2 or n = 3 ⇥ 2
with equal probability and with U chosen from a uniform
distribution on the domain of [0.1, 4.0]. After training,
we tested the neural network on instances with system
size n = 4⇥ 2, again strictly larger than our training set.

C. Meta-learning Methods & Results

In this section we present the main results of our
quantum-classical meta-learning experiments, displayed
in Figure 3, and discuss some additional details of our
methods used to produce these results. We trained and
tested a set of long short-term memory (LSTM) recur-
rent neural networks (RNN) to learn to optimize the va-
riety of QNN instances discussed in sections IIIA and
III B, namely, MaxCut QAOA, Ising QAOA and Hub-
bard VQE. For each of the three problem classes, the
RNN was trained using 10000 problem instances. This
training of the RNN was executed over a maximum of
1000 epochs, each with a time horizon of 10 iterations.
Hence, training required the simulation of inference for
at most 1 million quantum neural networks. In most
cases the meta-training was stopped well before these
1000 epochs were completed, following standard early-
stopping criteria [68].
The quantum circuits used for training and testing

the recurrent neural network were executed using the
Cirq quantum circuit simulator [69] running on a clas-
sical computer. The VQE ansatze were built using
OpenFermion-Cirq [67]. Neural network training and in-
ference was done in TensorFlow [70], using code adapted
from previous work by DeepMind [34].
For both testing and training, we squashed the read-

out of the cost function by a quantity which bounds the
operator norm of the Hamiltonian. This was done to en-
sure a normalized loss signal for our RNN across various
problem instances. In classical machine learning, normal-
izing data variance is well-known to accelerate and ame-
liorate training [71]. In the same spirit, we fed the RNN a
cost function squashed according to the Pauli coe�cient
norm, denoted k. . .k⇤. Recall that for a Hamiltonian Ĥ

with a decomposition as a linear combination of Paulis
of the form Ĥ =

P
j
↵jP̂j , then kĤk⇤ ⌘ k↵k1 =

P
j
|↵j |.

The squashed cost function is then simply the regular ex-
pectation value of the Hamiltonian, divided by the Pauli
coe�cient norm, f̄(✓) = hĤi✓ /kĤk⇤. As all Paulis have
a spectrum of {±1} we are guaranteed that the squashed
cost function f̄(✓) has its range contained in [�1, 1]. In

Y
Tuattitinsseporded
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Figure 3. Displayed above are the average relative errors with respect to the number of objective function queries during the
training of 50 random problem instances for the three classes of problems of interest, QAOA for MaxCut (left), QAOA for Ising
models (middle), and VQE for the Hubbard model (right), for various choices of optimizers and initialization heuristics. The
problem instances were sampled from the testing distribution described in sections III A and III B. These include a Gaussian
Process Regression (GPR) optimizer [62], and Nelder-Mead (NM) [41] with various initialization heuristics. The first of these
initialization heuristics was the best of 10 random guesses seed (Rnd. Seed). Also presented is NM initialized with application-
specific heuristic seeds (Heur. Seed), which consisted of the adiabatic heuristic for VQE [67], and the mean optimal parameters
of the training set for QAOA [63], and finally the seed from our meta-learned neural optimizer (LSTM). We cut o↵ the LSTM
after 10 iterations, as it is used mainly as an initializer for other optimizers. Note that we have not included overhead of
the meta-training in this plot, see the main text for a breakdown of the overhead for the training of the LSTM. The top row
is for noiseless readout of the expectation, while the bottom row has some Gaussian noise with variance 0.05 added to the
expectation value readouts, thus emulating approximate estimates of expectation values. For reference, for the set of testing
instances, given a QPU inference repetition rate of 10 kHz, the necessary wall clock time per objective query to achieve this
variance [6] in the cost estimate is at most (70 ± 40) seconds for MaxCut QAOA, (2.3 ± 0.6) seconds for Ising QAOA, and
(30 ± 20) seconds for Hubbard VQE. Note that the relative error is the di↵erence in the squashed cost function relative to the
squashed global optimum found through brute force methods, i.e., f̄rel((✓)) = (f̄(✓) � min f̄). Error bars represent the 95%
confidence interval for the random testing instances from the distribution of problems described in sections III A and III B.

Figure 3, we plot the relative error, which is the di↵erence
in the squashed cost function relative to the globally op-
timal squashed cost function value found through brute
force methods, f̄rel(✓) = (f̄(✓) � min✓ f̄(✓)). The brute
force optimization methods were basin hopping for the
QAOA instances [72], and exact diagonalization for the
VQE instances.

For the testing of the trained LSTM, we used randomly
sampled instances from the distributions of ansatze de-
scribed in sections IIIA and III B. In all cases, the testing
instances were for larger-size systems than those used for
training, while keeping the number of variational parame-
ters of the ansatze fixed. Note that as all the ansatze con-
sidered in this paper were QAOA-like, one can thus scale
the size of the system while keeping the same number of
parameters. This is an important feature of this class of
ansatze as our LSTM is trained to optimize ansatze of a
fixed parameter space dimension.

For all instances, the LSTM was trained on a time

horizon of T = 10 quantum-classical iterations, using the
observed improvement (2) as the meta-learning loss func-
tion. We trained the LSTM on noiseless quantum cir-
cuit simulations in Cirq [69]. Note that training of each
of the three LSTM networks already required the simu-
lation of 1 million quantum circuit executions with the
chosen time horizon of 10 iterations, and that the num-
ber of quantum circuit simulations scales linearly with
the time horizon. Additionally, gradient-based training
required backpropagation through time for the tempo-
ral hybrid quantum-classical computational graph, which
added further linearly-scaling overhead. Thus, we chose
a short time horizon to minimize the complexity of the
training. For reference, 10 iterations is a significantly
smaller number of quantum-classical optimization itera-
tions than what is typically seen in previous works on
QNN optimization [46]. The typical number of itera-
tions required by other optimizers is usually on the order
of hundreds to possibly thousands to reach a comparable
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optimum of the parameter landscape.

Although the LSTM reaches a good approximate opti-
mum in these 10 iterations, some applications of QNN’s
such as VQE require further optimization as a high-
precision estimate of the cost function is desired. Thus,
instead of simply using the LSTM as an optimizer for
an extended time horizon, we used the LSTM as a few-
iteration initializer for Nelder-Mead (NM). This was done
to minimize the complexity of training the RNN and
avoid the instabilities of longer training horizons where
the RNN would most likely learn a local method for fine-
tuning its own initial guess. A longer time horizon would
thus most likely not have provided a significant gain in
performance, all the while substantially increasing cost
of training.

We tested the robustness of the RNN optimizer by
comparing its performance to other common optimizers,
both in the cases where Gaussian noise was added to
the cost function evaluations, and for a noiseless read-
out idealized case. This additional Gaussian noise can
be interpreted as a means to emulate the natural noise
of quantum expectation estimation with a finite number
of measurement runs [9]. Figure 3 allows for comparison
of noisy and noiseless inference (QNN optimization) for
the trained LSTM versus alternative optimization and in-
tilization heuristics. For the noisy tests, the expectation
samples obeyed a normal distribution of variance 0.05,
thus the cost function estimates were drawn according to
yt ⇠ N (hĤi✓t

, 0.05) for the results presented in Figure
3. For the testing instances used to generate the results
presented in Figure 3, following a standard prescription
[6] for the number of repetitions required to guarantee an
upper bound to the variance of 0.05, the number of rep-
etitions (QNN inference runs) should be of (7± 4)⇥ 105

repetitions for MaxCut QAOA, (2.3 ± 0.6) ⇥ 104 repe-
titions for Ising QAOA, and (3 ± 2) ⇥ 105 repetitions
for Hubbard VQE. In terms of wall clock time, assuming
that the QPU can execute 10000 repetitions (consisting of
a quantum circuit execution, multi-qubit measurement,
and qubit resetting) per second, for the distribution of
testing instances, the total time needed for the LSTM
to perform its 10 optimization steps is in the range of
(700±400) seconds for MaxCut QAOA, (23±6) seconds
for Ising QAOA, and (300 ± 200) seconds for Hubbard
VQE. Note that the standard deviation here is due to
the variations in the Pauli norm of the Hamiltonians for
the sampled instances of the test set.

Apart from this added cost function noise, the simu-
lated quantum circuit executions were simulated with-
out any other form of readout or gate execution noise.
Plotted in Figure 3 are the 95% confidence intervals for
the optimization of the 50 testing instances which were
sampled according to the testing distributions described
in Sec. III A and Sec. III B. Our results show that
the neural optimizer learns initialization heuristics for
the QAOA and VQE parameters which generalize across
problem sizes. We discuss these results in further detail
in the following section.

Let us provide a description of the alternative opti-
mization and initialization heuristics used to generate
Figure 3. First alternative strategy was a Bayesian Op-
timization using Gaussian processes [62], here the initial
parameters are set to nil, same as the was the case for the
LSTM optimizer. Next, in order to compare the LSTM
to other initialization heuristics, we compared the initial-
ization of Nelder-Mead (NM) at parameter values found
from the best of 10 random guesses (Random Seed),
NM initialized using some state of the art heuristics for
QAOA and VQE (Heuristic Seed), and NM initialized
after 10 iterations of the LSTM (LSTM Seed). The
application-specific heuristic seeds (Heur. Seed) were
the adiabatic heuristic for VQE [67], where the varia-
tional parameters are scaled in a similar fashion to an
adiabatic interpolation across the 5 steps, while for the
QAOA the parameters were initialized at the mean value
of the optimal parameters for the training set distribution
of problem instances. As was shown in [63], as there is a
concentration of the cost function for fixed parameters,
one can thus expect the distribution of optimal parame-
ters of the QAOA to be concentrated around some mean.
In Figure III C, we compare the Euclidean distance in

parameter space between the output of the 10 iterations
of the LSTM versus other initialization heuristics. We
clearly see that the LSTM optimizer initializes the QNN
parameters closer to the optimal parameters of each test
instance, on average, as compared to other methods. We
see that in the case of the QAOA, the constant fit heuris-
tic [63] for the training instances yields a cluster of pa-
rameters that is not clustered around the optimal pa-
rameters of the larger instance, while the LSTM output
parameters are significantly closer to the globally opti-
mal parameters found by brute force. This shows a clear
separation between the parameters obtained from a con-
stant fit of the training set versus the LSTM’s adaptive
scheme for optimizing parameters in few iterations.

IV. DISCUSSION

As shown in Figure 3, our trained neural optimizer
reaches a higher-quality approximate optimum of the pa-
rameters in 10 iterations than other optimizers can man-
age in hundreds, both for noisy and noiseless readout.
Most evident in the case of VQE, where the local opti-
mizers can have severe di�culty optimizing parameters
when given noisy evaluations of the cost function. Of
all alternatives to the neural optimizer, the probabilistic
approach of Bayesian optimization via Gaussian process
regression was the best performer.
In all six settings, the LSTM rapidly finds an approx-

imate minimum within its restricted time horizon of 10
iterations. The neural optimizer needs to initialize the
parameters in a basin of attraction of the cost function
landscape so that a local optimizer can then easily con-
verge to a local optimum in fewer iterations and more
consistently. As we can see across all cases, the Nelder-
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Figure 4. The above histograms represent the parameter
space Euclidean distance to the true optimum d(✓) = k✓ �
✓⇤k2, immediately after initialization, for both the LSTM (af-
ter 10 iterations) and alternative initialization heuristics. For
each of the three cases, 50 samples of the test set were used.
For the QAOA, this alternative initialization heuristic was
identical to [63], whereas for VQE, this was the Adiabatic
Heuristic [67]. The histograms were collected from the test
set problem instances, which were described in Sections III A
and III B, and were used to generate the results presented
in Figure 3. We see that the LSTM initializes parameters
significantly closer to the optimum on average as compared
alternative heuristics.

Mead runs that are initialized by the LSTM rather than
other initialization heuristics tend to reach the highest
quality optimum with much lower variance in perfor-
mance. These result show that the LSTM initializes the
parameters in a good basin of attraction near the op-
timum. Although the LSTM initialization helps in all
cases, we can see that for the noisy VQE case in Figure
3, the Nelder-Mead approach struggles to improve upon
the guess of the LSTM. While not the focus of this work,
these results point towards the need for further investiga-
tion into better local optimization techniques which are
robust to noise [73].

When looking at the optimal parameters found by the
RNN (see Fig. III C), we observed a certain degree of
concentration in their values, similar to what has been
observed in previous works [32, 63]. The MaxCut QAOA
was the most concentrated, which corroborates recent ob-
servations [63]. Similarly, the optimal parameters of the
Ising QAOA were also observed to have a degree of con-
centration, as was also observed in previous work [32].
Finally, the VQE had the least amount of concentration
of the three problem classes, but still exhibited some de-
gree of clustering in the optimal values.

The concentration of parameters is not surprising given
the connections between QAOA-like ansatze and gradient
descent/adiabatic optimization [28, 60]. In a sense, these
QAOA-like QNN’s are simply variational methods to de-

scend the energy landscape, and the variational parame-
ters can be seen as energetic landscape descent hyperpa-
rameters, akin to gradient descent parameters. Similar to
how the classical meta-learning approaches to gradient-
based optimization converged onto methods comparable
to best-practices for hyperparameter optimization (e.g.,
comparable to performance of AdaGrad and other ma-
chine learning best-practice heuristics), the neural opti-
mizer in our case found a neighborhood of optimal hy-
perparameters and learned a heuristic to quickly adjust
these parameters on a case-by-case basis.
Although it may seem that this meta-learning method

is costly due to its added complexity over regular opti-
mization, one must remember that, for the time being,
classical computation is still much cheaper than quan-
tum computation. As the optimization scheme gener-
alizes across system sizes, one may imagine training an
LSTM to optimize a certain ansatz for small system sizes
by quantum simulation on a classical computer, then us-
ing the LSTM to rapidly initialize the parameters for a
much larger instance of the same class of problem on a
quantum computer. This approach may be well worth
the added classical computation, as it can reduce the
number of required runs to get an accurate answer on
the QPU by an order of magnitude or more.

V. CONCLUSION & OUTLOOK

In this paper, we proposed a novel approach to the
optimization of quantum neural networks, namely, using
meta-learning and a classical neural network optimizer.
We tested the performance of this approach on a set
of random instances of variational quantum algorithm
optimization tasks, which were the Quantum Approxi-
mate Optimization applied to MaxCut and Sherrington-
Kirkpatrick Ising spin glasses, and a set of Variational
Quantum Eigensolver ansatze for preparation of ground
states of Hubbard models.
The neural network was used to rapidly find a global

approximate optimum of the parameters, which then
served as an initialization point for other local search
heuristics. This combination yielded optima of the quan-
tum neural network landscape which were of a higher
quality than alternatives could produce with orders of
magnitude more quantum-classical optimization itera-
tions. Furthermore, the neural network exhibited gener-
alization capacity across problem sizes, thus opening up
the possibility of classical pre-training of the neural opti-
mizer for inference on larger instances requiring quantum
processors.
Two significant challenges of quantum neural network

optimization in the NISQ era are finding optimization
methods that allow for precise fine-tuning of the param-
eters to hone in on local minima despite the presence of
readout noise and to find good initialization heuristics to
allow for more consistent convergence of these local op-
timizers. Given the results presented in this paper, we



11

believe that this first challenge has been mitigated by
our quantum-classical meta-learning approach, while the
second challenge remains open for future work.

In terms of possible extensions of this work, the meta-
learning approach could be further improved in several
ways. One such way would be to use more recent ad-
vances in meta-learning optimizer neural networks [74]
which can scale to arbitrary problems and number of pa-
rameters. This would extend the capabilities of our cur-
rent approach to optimizing the parameters of arbitrary
QNN’s beyond Trotter-based/QAOA-like ansatze with
variable numbers of parameters across instances. An-
other possible extension of this work would be to meta-
learn an optimizer for Quantum Dynamical Descent [28],
a quantum generalization of gradient descent which takes
the form of a continuous-variable QAOA. As our neural
optimizer was tested on various QAOA problems success-
fully, one could imagine applying it to the optimization of
the Quantum Dynamical Descent hyperparameters. The
latter could be considered learning to learn with quantum

dynamical descent with classical gradient descent. This
would also be a way to generalize the applicability of

our approach to arbitrary QNN optimization tasks. Fi-
nally, as a NISQ-oriented alternative to the latter, one
could meta-learn to optimize the hyperparameters for the
stochastic quantum circuit gradient descent algorithm re-
cently proposed by Harrow et al. [31]. We leave the above
proposed explorations to future work.
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