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Abstract 

This Recommendation specifies the set of elliptic curves recommended for U.S. Government 
use. In addition to the previously recommended Weierstrass curves defined over prime fields and 
binary fields, this Recommendation includes two newly specified Edwards curves, which 
provide increased performance, side-channel resistance, and simpler implementation when 
compared to traditional curves. This Recommendation also specifies alternative representations 
for these new curves to allow more implementation flexibility. The new curves are interoperable 
with those specified by the Crypto Forum Research Group (CFRG) of the Internet Engineering 
Task Force (IETF). 

Keywords 

computer security; discrete logarithm-based groups; domain parameters; elliptic curve 
cryptography. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 
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Audience 

This document is intended for implementers of cryptographic schemes that include the use of 
elliptic curve cryptography. 

Conformance Testing 

Conformance testing for implementations of this Recommendation will be conducted within the 
framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic 
Module Validation Program (CMVP). The requirements of this Recommendation are indicated 
by the word “shall.” Some of these requirements may be out of scope for CAVP or CMVP 
validation testing and are thus the responsibility of entities using, implementing, installing, or 
configuring applications that incorporate this Recommendation. 
Conformant implementations may perform procedures via an equivalent sequence of operations, 
provided that these include all cryptographic checks included with the specifications in this 
document. This is important because the checks are essential for the prevention of subtle attacks. 
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Executive Summary 

This Recommendation specifies the set of elliptic curves recommended for U.S. Government 
use. It includes:  

− Specification of elliptic curves previously specified in Federal Information Processing 
Standard (FIPS) 186-4, Digital Signature Schemes [FIPS_186-4]. This includes both 
elliptic curves defined over a prime field and curves defined over a binary field. Although 
the specifications for elliptic curves over binary fields are included, these curves are now 
deprecated. It is strongly recommended to use the other prime curves. 

− Specification of new Montgomery and Edwards curves, which are detailed in Elliptic 
Curves for Security [RFC_7748].  

− A reference for the Brainpool curves specified in [RFC_5639]. These curves are allowed 
to be used for interoperability reasons (i.e., to accommodate inclusion in FIPS-validated 
products).   

− A reference for the curve secp256k1 specified in [SEC_2]. This curve is allowed to be 
used for blockchain-related applications. 

− Elliptic curves in FIPS 186-4 that do not meet the current bit security requirements put 
forward in NIST Special Publication (SP) 800-57, Part 1, Recommendation for Key 
Management: Part 1 – General [SP_800-57], are now legacy-use. They may be used to 
process already protected information (e.g., decrypt or verify) but not to apply protection 
to information (e.g., encrypt or sign). Also see NIST SP 800-131A, Transitions: 
Recommendation for Transitioning the Use of Cryptographic Algorithms and Key 
Lengths [SP_800-131A]. 

This Recommendation provides details regarding the group operations for each of the specified 
elliptic curves and the relationship between the various curve models, allowing for flexibility 
regarding the use of curves most suitable in particular applications. It also gives cryptographic 
criteria for the selection of suitable elliptic curves and provides more details on finite field 
arithmetic and data representation than were available in FIPS 186-4. 
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 Introduction  

 Background 

Elliptic curve cryptography (ECC) has uses in applications involving digital signatures (e.g., 
Elliptic Curve Digital Signature Algorithm [ECDSA]) and key agreement schemes (e.g., Elliptic 
Curve Diffie-Hellman [ECDH]). Historically, elliptic curves have usually been expressed in 
short Weierstrass format. However, curves that are expressed using a different format, such as 
Montgomery curves and twisted Edwards curves, have gone from garnering academic interest to 
being deployed in a number of applications. These curves can provide better performance and 
increased side-channel resistance. 
A number of standards-setting organizations besides NIST (e.g., ANSI X9F, ISO, SEC, and 
IETF) have developed elliptic curve standards. In June 2015, NIST organized an ECC workshop 
to discuss the design of alternate elliptic curves that are secure, efficient, and easy to use while 
also being resilient to a wide range of implementation attacks. Subsequently, NIST solicited 
public comments on the Digital Signature Standard FIPS 186-4, requesting specific feedback 
regarding the digital signature schemes in FIPS 186 as well as possible new recommended 
elliptic curves. This publication is the result of that input. 

 Purpose and Scope 

This Recommendation provides updated specifications of elliptic curves that are appropriate for 
use by the U.S. Federal Government for digital signatures. It is intended for use in conjunction 
with other NIST publications, such as NIST SP 800-56A, Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm-Based Cryptography [SP_800-56A]; FIPS 
186-5, Digital Signature Standard [FIPS_186-5]; and related specifications. The key pairs 
specified here are used for digital signature generation and verification or key agreement only 
and should not be used for any other purposes.  
This Recommendation is intended to provide sufficient information for a vendor to implement 
ECC using asymmetric algorithms in FIPS 140-3-validated modules. 

 Document Organization 

The remainder of this document includes the following sections and appendices: 

• Section 2: Overview of Elliptic Curves – This section details the different curve models 
being used with this Recommendation, including notational conventions. 

• Section 3: Recommended Curves for Federal Government Use – This section highlights 
the domain parameters for all elliptic curves recommended for U.S. Government use. 

• References – This section contains information on the documents referenced in the 
publication. 

• Appendix A: Details of Elliptic Curve Group Operations – This appendix discusses the 
group laws for each of the different curve models specified in this Recommendation. 
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• Appendix B: Relationship Between Curve Models – This appendix details how different 
curve models are related and how the coordinates of a point and the domain parameters of a 
curve in one curve model relate to those in another curve model.  

• Appendix C: Generation Details for Recommended Elliptic Curves – This appendix 
describes the cryptographic criteria that guided the selection of suitable elliptic curves and 
the process by which one of many such suitable elliptic curves is selected. 

• Appendix D: Elliptic Curve Routines – This appendix details elementary routines for 
elliptic curves, such as verification that these curves are indeed well-formed, and point 
compression. 

• Appendix E: Auxiliary Functions – This appendix covers mathematical functions that are 
used to describe elliptic curve operations and representation conversions, such as inversion  
and taking square roots. 

• Appendix F: Data Conversion – This appendix documents the detailed procedure for the 
conversion of data elements, such as integers, field elements, bit strings, octet strings, and 
elliptic curve points. 

• Appendix G: Implementation Aspects – This appendix discusses the various 
implementation aspects of binary curves, including conversions between different field 
representations. For prime curves, it indicates how the special form of the underlying prime 
field aids in efficient modular reduction. 

• Appendix H: Other Allowed Elliptic Curves – This appendix lists other elliptic curves that 
may be used for interoperability reasons.   

• Appendix I: Symbols, Abbreviations, and Acronyms 

• Appendix J: Glossary 
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 Overview of Elliptic Curves 

Let E be an elliptic curve defined over the field GF(q). 
The cardinality |E| of the curve is equal to the number of points defined over GF(q) on the curve 
and satisfies the equation |E| = (q+1)−t, where |t| ≤ 2 �𝑞𝑞. Thus, |E| and q have the same order of 
magnitude. 
The integer t is called the trace of E over the field GF(q). 
The points on E form a commutative group under addition (for the group law for each curve 
form, see Appendix A). Any point P on the curve is the generator of a cyclic subgroup 〈P〉 = {kP 
| k = 0, 1, 2, …} of E. The order of P in E is defined as the cardinality of 〈P〉. A curve is cyclic if 
it is generated by some point on E. All curves of prime order are cyclic, while all curves of order 
|E| = h⋅n, where n is a large prime number and h is a small number, have a large cyclic subgroup 
of prime order n. 

If R is a point on the curve that is also contained in 〈P〉, there is a unique integer k in the interval 
[0, l−1] so that R = kP, where l is the order of P in E. This number is called the discrete logarithm 
of R to the base P. The discrete logarithm problem is the problem of finding the discrete 
logarithm of R to the base P for any two points P and R on the curve, if such a number exists. 
A quadratic twist of E is a curve E’ related to E, with cardinality |E’| = (q+1)+t. If E is a curve in 
one of the curve forms specified in this Recommendation, a quadratic twist of this curve can be 
expressed using the same curve model, although with different curve parameters. 

 Non-binary Curves 

2.1.1. Curves in Short-Weierstrass Form 

Let GF(q) denote the finite field with q elements, where q is an odd prime power and is not 
divisible by three. Let Wa,b be the Weierstrass curve with the defining equation y2 = x3 + a x + b, 
where a and b are elements of GF(q) with 4 a3 + 27 b2 ≠ 0. When selecting curve parameters, a 
Seed value may be used to generate the parameters a and b as described in Appendix C.2.1.1. 
The points of Wa,b are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that 
satisfy the defining equation (i.e., the affine points) together with the special point ∅ (the “point 
at infinity”). This set forms a group under the operation of addition on elliptic curves via the 
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See 
Appendix A.1.1 for details of the group operation. 

2.1.2. Montgomery Curves 

Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let MA,B be the 
Montgomery curve with defining equation B v2 = u (u2 + A u + 1), where A and B are elements 
of GF(q) with A ≠ ± 2 and B ≠ 0. The points of MA,B are the ordered pairs (u, v) whose 
coordinates are elements of GF(q) and that satisfy the defining equation (i.e., the affine points) 
together with the special point ∅ (the “point at infinity”). This set forms a group under the 
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operation of addition on elliptic curves via the “chord-and-tangent” rule, where the point at 
infinity serves as the identity element. See Appendix A.1.2 for details of the group operation. 

2.1.3. Twisted Edwards Curves 

Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let Ea,d be the 
twisted Edwards curve with defining equation a x2 + y2 = 1+ d x2 y2, where a and d are elements 
of GF(q) with a, d ≠ 0, a ≠ d,  and a is a square in GF(q) while d is not. The points of Ea,d are the 
ordered pairs (x, y) whose coordinates are elements of GF(q) and that satisfy the defining 
equation (i.e., the affine points). It can be shown that this set forms a group under the operation 
addition, where the point (0, 1) serves as the identity element. The addition formulae are 
complete, meaning that the formulae work for all inputs on the curve. See Appendix A.1.3 for 
details of the group operation. 
An Edwards curve is a twisted Edwards curve with a = 1. 

 Binary Curves 

2.2.1. Curves in Short-Weierstrass Form 

Let GF(q) denote the finite field with q elements, where q = 2m. Let Ba,b be the Weierstrass curve 
with defining equation y2 + x y = x3 + a x2 + b, where a and b are elements of GF(q) with b ≠ 0. 
The points of Ba,b are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that 
satisfy the defining equation (i.e., the affine points) together with the special point ∅ (the “point 
at infinity”). This set forms a group under the operation of addition on elliptic curves via the 
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See 
Appendix A.2.1 for details of the group operation. 
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 Recommended Curves for U.S. Federal Government Use 

This section specifies the elliptic curves recommended for U.S. Federal Government use and 
contains choices for the private key length and underlying fields. This includes elliptic curves 
over prime fields (Section 3.2) and elliptic curves over binary fields (Section 3.3), where each 
curve takes one of the forms described in Section 3 (referred to as “Type” below). 
Each recommended curve is uniquely defined by its domain parameters D, which indicate the 
field GF(q) over which the elliptic curve is defined, the parameters of its defining equation, and 
principal parameters, such as the cofactor h of the curve, the order n of its prime-order subgroup, 
and a designated point G on the curve of order n (i.e., the “base point”). In the case 𝑞𝑞 = 2𝑚𝑚, the 
domain parameters also include a description of the representation chosen for GF(q). 
For details regarding the generation method of the elliptic curves, see Appendix C. 

 Choices of Key Lengths, Underlying Fields, Curves, and Base Points 

3.1.1. Choice of Key Lengths 

The principal parameters for elliptic curve cryptography are the elliptic curve E and a designated 
point G on E called the base point. The base point has order n, which is a large prime. The 
number of points on the curve is h⋅n for some integer h (the cofactor), which is not divisible by 
n. For efficiency reasons, it is desirable for the cofactor to be small. 
All of the curves given below have cofactors 1, 2, 4, or 8. As a result, the private and public keys 
for a curve are approximately the same length. 

3.1.2. Choice of Underlying Fields 

For each key length, two kinds of fields are provided: 
1. A prime field is the field GF(p), which contains a prime number p of elements. The 

elements of this field are the integers modulo p, and the field arithmetic is implemented 
in terms of the arithmetic of integers modulo p.  

2. A binary field is the field GF(2m), which contains 2m elements for some m (called the 
degree of the field). The elements of this field are the bit strings of length m, and the field 
arithmetic is implemented in terms of operations on the bits. 

The approximate security strengths for the elliptic curves specified in this document are given in 
Table 1. The security strength of an elliptic curve is directly related to the order of the basepoint. 
In general, if an elliptic curve has a basepoint of order n, then the security strength will be 
approximately one half of the bit length of n. 

Table 1. Approximate Security Strength of the Recommended Curves 

Security Strength Recommended Curves 

112 P-224, K-233, B-233 
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Security Strength Recommended Curves 

128 P-256, W-25519, Curve25519, Edwards25519, K-283, B-283 

192 P-384, K-409, B-409 

224 W-448, Curve448, Edwards448, E448 

256 P-521, K-571, B-571 

Elliptic curves in FIPS 186-4 that do not meet the current bit security requirements put forward 
in NIST SP 800-57, Part 1, Recommendation for Key Management: Part 1 – General [SP_800-
57], are now legacy-use. They may be used to process already protected information (e.g., 
decrypt or verify) but not to apply protection to information (e.g., encrypt or sign). Also see 
NIST SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic 
Algorithms and Key Lengths [SP_800-131A]. 
Each elliptic curve specified in this recommendation is allowed for specific NIST approved 
cryptographic functions. The allowed usages for each curve are summarized in Table 2. 

Table 2. Allowed Usage of the Specified Curves 

Specified Curves Allowed Usage 

K-233, B-233 
K-283, B-283 
K-409, B-409 
K-571, B-571 

 

Deprecated 

P-224 
P-256 
P-384 
P-521 

 

ECDSA, EC key establishment (see [SP_800-56A]) 

Edwards25519 
Edwards448 

 

EdDSA 

Curve25519, W-25519 
Curve448, E448, W-448 

Alternative representations included for 
implementation flexibility.  Not to be used for ECDSA 

or EdDSA directly. 

3.1.3. Choice of Basis for Binary Fields 

To describe the arithmetic of a binary field, it is first necessary to specify how a bit string is to be 
interpreted. This is referred to as choosing a basis for the field. There are two common types of 
bases: a polynomial basis and a normal basis. 



NIST SP 800-186  Discrete Logarithm-based Cryptography: 
February 2023   Elliptic Curve Domain Parameters 

8 

• A polynomial basis is specified by an irreducible polynomial modulo 2 called the field 
polynomial. The bit string (am–1 … a2  a1  a0) is used to represent the polynomial 

am–1 t m–1 + …+ a2 t2 + a1 t + a0 

over GF(2). The field arithmetic is implemented as polynomial arithmetic modulo p(t), 
where p(t) is the field polynomial.  

• A normal basis is specified by an element θ of a particular kind. The bit string (a0  a1  a2  
… am–1) is used to represent the element 

a0θ + a1θ 2 + a2θ 2 2 + … + am–1θ 2 m–1. 

Normal basis field arithmetic is not easy to describe or efficient to implement in general 
except for a special class called Type T low-complexity normal bases. For a given field of 
degree m, the choice of T specifies the basis and the field arithmetic (see Appendix G.3). 

There are many polynomial bases and normal bases from which to choose. The following 
procedures are commonly used to select a basis representation: 

• Polynomial Basis: If an irreducible trinomial tm + tk + 1 exists over GF(2), then the field 
polynomial p(t) is chosen to be the irreducible trinomial with the lowest-degree middle 
term tk. If no irreducible trinomial exists, then a pentanomial tm + ta + tb + tc + 1 is 
selected. The particular pentanomial chosen has the following properties: the second term 
ta has the lowest degree among all irreducible pentanomials of degree m; the third term tb 
has the lowest degree among all irreducible pentanomials of degree m with the second 
term ta; and the fourth term tc has the lowest degree among all irreducible pentanomials 
of degree m with the second term ta and third term tb. 

• Normal Basis: Choose the Type T low-complexity normal basis with the smallest T. 
For each binary field, the parameters are given for the above basis representations. 

3.1.4. Choice of Curves 

Two kinds of curves are given: 

• Pseudorandom curves are those whose coefficients are generated from the output of a 
cryptographic hash function (with input from a random seed). If the domain parameter 
seed value is given along with the coefficients, it can be easily verified that the 
coefficients were generated by that method. The generation and verification procedures 
for the pseudorandom curves in this section are specified in Appendix C.3. 

• Special curves are those whose coefficients and underlying fields have been selected to 
optimize the efficiency of the elliptic curve operations. 

For each curve size range, the following curves are given in Sections 3.2 and 3.3: 

→ A pseudorandom curve over GF(p)  
→ A pseudorandom curve over GF(2m)  
→ A special curve over GF(2m) called a Koblitz curve or anomalous binary curve 
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In addition, some special Edwards, Weierstrass, and Montgomery curves over GF(p) are given 
for two size ranges. 

 Curves Over Prime Fields 

This section specifies elliptic curves over prime fields recommended for U.S. Federal 
Government use, where each curve takes the form of a curve in short-Weierstrass form (Section 
3.2.1), a Montgomery curve (Section 3.2.2), or a twisted Edwards curve (Section 3.2.3). 

3.2.1. Weierstrass Curves 

This specification includes pseudorandom Weierstrass curves generated over prime fields P-192, 
P-224, P-256, P-384, and P-521 (see Sections 3.2.1.2 – 3.2.1.5) and special Weierstrass curves 
over prime fields W-25519 (Section 3.2.1.6) and W-448 (Section 3.2.1.7). 
For each Weierstrass curve, 

E :  y2 ≡  x3 +ax +b mod p, 
the following domain parameters D =( p, h, n, Type, a, b, G, {Seed, c}) are given: 

• The prime modulus p 

• The cofactor h 
o For pseudorandom curves, the cofactor h = 1, so the order n is prime.  
o For special curves, the cofactor h > 1, so the order n is not prime. 

• The Type is “Weierstrass curve” 

• The coefficient a 
o For pseudorandom curves, a = –3 was made for reasons of efficiency; see IEEE 

Std 1363-2000. 

• The coefficient b 

o For pseudorandom curves, the coefficient b satisfies b2 c ≡ –27 mod p. 

• The base point G with x coordinate Gx and y coordinate Gy  

• The 160-bit input Seed to the SHA-1 hash algorithm in Appendix C.3 for pseudorandom 
curves. Seed is not used with the special curves W-25519 (Section 3.2.1.6) and W-448 
(Section 3.2.1.7). 

• The output c of the SHA-1 hash algorithm used for pseudorandom curves. The value c is 
not used with the special curves W-25519 (Section 3.2.1.6) and W-448 (Section 3.2.1.7). 

All values (except for the cofactor and seed) are provided both in decimal and hexadecimal. The 
cofactor is given in decimal form, and the seed is given in hexadecimal. 
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3.2.1.1. P-192 

This curve is for legacy-use only. See [FIPS_186-4] for the specification. 

3.2.1.2. P-224 

The elliptic curve P-224 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 
order h⋅n, where h = 1, and n is a prime number. The quadratic twist of this curve has order h1⋅n1, 
where h1 = 3^2 × 11 × 47 × 3015283 × 40375823 × 267983539294927, and 𝑛𝑛1 is a prime 
number.1 This curve has domain parameters D = ( p, h, n, Type, a, b, G, {Seed, c}), where the 
Type is “Weierstrass curve,” and the other parameters are defined as follows: 

p:       2224 −  296 + 1 
    = 26959946667150639794667015087019630673557916260026308143510066298881 

    (=0xffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001)  
h:  1  
n:        26959946667150639794667015087019625940457807714424391721682722368061 
      (=0xffffffff ffffffff ffffffff ffff16a2 e0b8f03e 13dd2945 5c5c2a3d) 
tr:      4733100108545601916421827343930821 
 (=(p+1) − h⋅ n = 0xe95c 1f470fc1 ec22d6ba a3a3d5c5) 
a:       −3 
          = 26959946667150639794667015087019630673557916260026308143510066298878 
 (=0xffffffff ffffffff ffffffff fffffffe ffffffff ffffffff fffffffe) 
b:       18958286285566608000408668544493926415504680968679321075787234672564
 (=0xb4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4) 
Gx:     19277929113566293071110308034699488026831934219452440156649784352033
 (=0xb70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21) 
Gy:     19926808758034470970197974370888749184205991990603949537637343198772
 (=0xbd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34) 
Seed: 0xbd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5 
c:        9585649763196999776159690989286240671136085803543320687376622326267 

   (=0x5b056c7e 11dd68f4 0469ee7f 3c7a7d74 f7d12111 6506d031 218291fb) 

3.2.1.3. P-256 

The elliptic curve P-256 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 
order h⋅n, where h = 1, and n is a prime number. The quadratic twist of this curve has order h1⋅n1, 
where h1 = 3 × 5 × 13 × 179, and 𝑛𝑛1 is a prime number. This curve has domain parameters D = 
(p, h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve,” and the other 
parameters are defined as follows: 

p:       2256 −  2224 + 2192 + 296 − 1 
    = 115792089210356248762697446949407573530\ 

 
1 For the quadratic twist of P-224, the value of n1 is the 117-bit number 177594041488131583478651368420021457. This value 
is significantly smaller than the order n of the basepoint G of P-224. As a result, it is essential to verify domain parameter validity 
to ensure that users are performing operations on P-224 and not on its quadratic twist. 
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             086143415290314195533631308867097853951  
    (=0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff 

    ffffffff )  
h:  1  
n:        115792089210356248762697446949407573529\ 
           996955224135760342422259061068512044369  

    (=0xffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2  
    fc632551) 

tr:       89188191154553853111372247798585809583 
 (=(p+1) − h⋅ n = 0x43190553 58e8617b 0c46353d 039cdaaf) 
a:       −3 
          = 115792089210356248762697446949407573530\ 
              086143415290314195533631308867097853948 

 (=0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff 
     fffffffc) 

b:       41058363725152142129326129780047268409\ 
          114441015993725554835256314039467401291 

 (=0x5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 
     27d2604b) 

Gx:     48439561293906451759052585252797914202\ 
          762949526041747995844080717082404635286  
 (=0x6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 
      d898c296) 
Gy:     36134250956749795798585127919587881956\ 
          611106672985015071877198253568414405109 

 (=0x4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068     
     37bf51f5) 

Seed: 0xc49d3608 86e70493 6a6678e1 139d26b7 819f7e90  
c:        57436011470200155964173534038266061871\ 
           440426244159038175955947309464595790349 

   (=0x7efba166 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5114abc af317768 
      0104fa0d) 

3.2.1.4. P-384 

The elliptic curve P-384 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 
order h⋅n, where h = 1, and n is a prime number. The quadratic twist of this curve has order h1⋅n1, 
where h1 = 1, and 𝑛𝑛1 is a prime number. This curve has domain parameters D = (p, h, n, Type, a, 
b, G, {Seed, c}), where the Type is “Weierstrass curve,” and the other parameters are defined as 
follows: 

p: 2384 −  2128 − 296 + 232 − 1 
= 3940200619639447921227904010014361380507973927046544666794\  
   8293404245721771496870329047266088258938001861606973112319 
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  

ffffffff fffffffe ffffffff 00000000 00000000 ffffffff) 
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h: 1 
n:  3940200619639447921227904010014361380507973927046544666794\  

6905279627659399113263569398956308152294913554433653942643  
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  
     c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973) 

tr:       1388124618062372383606759648309780106643088307173319169677 
 (=(p+1) − h⋅ n = 0x389cb27e 0bc8d21f a7e5f24c b74f5885 1313e696   
   333ad68d) 
a:         −3 

= 3940200619639447921227904010014361380507973927046544666794\ 
   8293404245721771496870329047266088258938001861606973112316 
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
      ffffffff fffffffe ffffffff 00000000 00000000 fffffffc) 

b:   2758019355995970587784901184038904809305690585636156852142\ 
8707301988689241309860865136260764883745107765439761230575 
    (=0xb3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112  
      0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef) 

Gx:   2624703509579968926862315674456698189185292349110921338781\ 
5615900925518854738050089022388053975719786650872476732087  
    (=0xaa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98  
      59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7)  

Gy: 832571096148902998554675128952010817928785304886131559470\ 
9205902480503199884419224438643760392947333078086511627871  
    (=0x3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c  
      e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f) 

Seed:  0xa335926a a319a27a 1d00896a 6773a482 7acdac73  
c:  1874980186709887347182107097135388878869033900306543902178\ 

0101954060871745882341382251168574711376101826101037376643 
    (=0x79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1  
    0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483) 

3.2.1.5. P-521 

The elliptic curve P-521 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 
order h⋅n, where h = 1, and n is a prime number. The quadratic twist of this curve has order h1⋅n1, 
where h1 is at least  5 × 7 × 69697531 × 635884237, and 𝑛𝑛1 is a prime number. This curve has 
domain parameters D = (p, h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve,” 
and the other parameters are defined as follows: 

p:         2521 − 1 
      = 686479766013060971498190079908139321726943530014330540939\  
         446345918554318339765605212255964066145455497729631139148 \ 
         0858037121987999716643812574028291115057151  
       (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  

            ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  
            ffffffff ffffffff ffffffff ffffffff) 
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h:        1 
n:         686479766013060971498190079908139321726943530014330540939\  
            446345918554318339765539424505774633321719753296399637136\  
            3321113864768612440380340372808892707005449  
                    (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  

            ffffffff fffffffa 51868783 bf2f966b 7fcc0148 f709a5d0  
                  3bb5c9b8 899c47ae bb6fb71e 91386409) 
tr:       657877501894328237357444332315020117536\ 
 923257219387276263472201219398408051703 
 (=(p+1) − h⋅ n = 0x5 ae79787c 40d06994 8033feb7 08f65a2f  

      c44a3647 7663b851 449048e1 6ec79bf7) 
a:        −3 

     = 686479766013060971498190079908139321726943530014330540939\  
        446345918554318339765605212255964066145455497729631139148 \ 

              0858037121987999716643812574028291115057148 
      (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  

                 ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  
                 ffffffff ffffffff ffffffff fffffffc) 
b:        1093849038073734274511112390766805569936207598951683748994\ 
           5863944959531161507350160137087375737596232485921322967063\ 
           13309438452531591012912142327488478985984 
                (=0x051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3 
                b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd 3bb1bf07 
                3573df88 3d2c34f1 ef451fd4 6b503f00)  
Gx:      2661740802050217063228768716723360960729859168756973147706\ 
           6713684188029449964278084915450806277719023520942412250655\ 
           58662157113545570916814161637315895999846   
                (=0xc6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521 

          f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 a2ffa8de 
               3348b3c1 856a429b f97e7e31 c2e5bd66)  
Gy:      37571800257700204635455072244911836035944551347697624866945\ 
           67779615544477440556316691234405012945539562144444537289428\ 
           522585666729196580810124344277578376784                    

    (=0x118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468 
                17afbd17 273e662c 97ee7299 5ef42640 c550b901 3fad0761  
                353c7086 a272c240 88be9476 9fd16650) 
Seed:  0xd09e8800 291cb853 96cc6717 393284aa a0da64ba  
c:        2420736670956961470587751833778383872272949280174637971106318\ 
           2239560106363555573338990358663426503785752212772688861827046\ 
           43828850020061383251826928984446519 

    (=0x0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8 
          f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9 ed8a3c22  

                00b8f875 e523868c 70c1e5bf 55bad637) 
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3.2.1.6. W-25519 

The elliptic curve W-25519 is a Weierstrass curve Wa,b defined over the prime field GF(p) with p 
= 2255-19 that has order h⋅n, where h = 8, and n is a prime number. The quadratic twist of this 
curve has order h1⋅n1, where h1 = 4, and 𝑛𝑛1 is a prime number. This curve has domain parameters 
D = (p, h, n, Type, a, b, G), where the Type is “Weierstrass curve,” and the other parameters are 
defined as follows: 

p:       2255−19 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
     ffffffed) 
h:  8  
n: 72370055773322622139731865630429942408\ 
 57116359379907606001950938285454250989 
      (=2252 +  0x14def9de a2f79cd6 5812631a 5cf5d3ed) 
tr:      −221938542218978828286815502327069187962 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 
a:       19298681539552699237261830834781317975\ 
          544997444273427339909597334573241639236 

 (=0x2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaa98    
     4914a144) 

b:       55751746669818908907645289078257140818\ 
          241103727901012315294400837956729358436 

 (=0x7b425ed0 97b425ed 097b425e d097b425 ed097b42 5ed097b4 260b5e9c 
     7710c864) 

Gx:     19298681539552699237261830834781317975\ 
          544997444273427339909597334652188435546 

(=0x2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa 
    aaaaaaaa aaad245a) 

Gy:     43114425171068552920764898935933967039\ 
 370386198203806730763910166200978582548 

(=0x5f51e65e 475f794b 1fe122d3 88b72eb3 6dc2b281 92839e4d d6163a5d               
81312c14) 

The curve W-25519 is isomorphic to  Curve25519 specified in Section 3.2.2.1. See Appendix 
B.2 for more details. 

3.2.1.7. W-448 

The elliptic curve W-448 is the Weierstrass curve Wa,b defined over the prime field GF(p) with p 
= 2448−2224−1 and has order h⋅n, where h = 4, and n is a prime number. The quadratic twist of this 
curve has order h1⋅n1, where h1 = 4, and n1 is a prime number. This curve has domain parameters 
D = (p, h, n, Type, a, b, G), where the Type is “Weierstrass curve,” and the other parameters are 
defined as follows: 

p:       2448−2224−1 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 
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h:  4  
n:       1817096810739017226373309519720011335884103401718295150703725497951 
 46003961539585716195755291692375963310293709091662304773755859649779 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 
   54a7bb0d) 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 
 (=(p+1) − h⋅ n = 0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  
     721cf5b5 529eec34) 
a:       4845591495304045936995492052586696895690942404582120401876601327870 
          74885444487181790930922465784363953392589641229091574035657199637535 
      (=0xaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa9 
      ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 1a76d41f) 
b:       2691995275168914409441940029214831608717190224767844667709222959928 
          19380802492878772739401369880202196329216467349495319191685664513904 
     (=0x5ed097b4 25ed097b 425ed097 b425ed09 7b425ed0 97b425ed 097b425e 
        71c71c71 c71c71c7 1c71c71c 71c71c71 c71c71c7 1c72c87b 7cc69f70) 
Gx:     4845591495304045936995492052586696895690942404582120401876601327870\ 
          7488544448718179093092246578436395339258964122909157403566534562907 

 (=0xaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa  
      00000000 00000000 00000000 00000000 00000000 00000000 0000cb91) 

Gy:     3552939267855681752641275020637833348089763993877142718318808984351\ 
 69088786967410002932673765864550910142774147268105838985595290606362 

 (=0x7d235d12 95f5b1f6 6c98ab6e 58326fce cbae5d34 f55545d0 60f75dc2  
     8df3f6ed b8027e23 46430d21 1312c4b1 50677af7 6fd7223d 457b5b1a) 

The curve W-448 is isomorphic to the curve Curve448 specified in Section 3.2.2.2. See 
Appendix B.2 for more details. 

3.2.2. Montgomery Curves 

As a result of simpler addition formulas, Montgomery curves may offer improved performance 
with improved resistance to side-channel attacks. These curves can also provide a bridge 
between short-Weierstrass curves and Edwards curves. 

3.2.2.1. Curve25519 

The elliptic curve Curve25519 is the Montgomery curve MA,B defined over the prime field GF(p) 
with p = 2255-19 and parameters A = 486662 and B = 1 [RFC_7748]. This curve has order h⋅n, 
where h = 8, and n is a prime number. For this curve, A2−4 is not a square in GF(p), whereas A+2 
is. The quadratic twist of this curve has order h1⋅n1, where h1 = 4, and n1 is a prime number. This 
curve has domain parameters D = (p, h, n, Type, A, B, G), where the Type is “Montgomery 
curve,” and the other parameters are defined as follows: 

p:       2255−19 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
     ffffffed) 
h:  8  
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n: 72370055773322622139731865630429942408\ 
 57116359379907606001950938285454250989 
      (=2252 + 0x14def9de a2f79cd6 5812631a 5cf5d3ed) 
tr:      −221938542218978828286815502327069187962 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 
A:       486662 
B:       1 
Gu:      9 
 (=0x9) 
Gv:      43114425171068552920764898935933967039\ 
 370386198203806730763910166200978582548 

 (=0x5f51e65e 475f794b 1fe122d3 88b72eb3 6dc2b281 92839e4d d6163a5d 
81312c14) 

Curve25519 is isomorphic to the curve W-25519 specified in Section 3.2.2.1 and is birationally 
equivalent to the curve Edwards25519. See Appendices B.1 and B.2 for more details. 

3.2.2.2. Curve448 

The elliptic curve Curve448 is the Montgomery curve MA,B defined over the prime field GF(p) 
with p = 2448−2224−1 and parameters A = 156326 and B = 1 [RFC_7748]. This curve has order 
h⋅n, where h = 4, and n is a prime number. For this curve, A2−4 is not a square in GF(p), whereas 
A-2 is. The quadratic twist of this curve has order h1⋅n1, where h1 = 4, and n1 is a prime number. 
This curve has domain parameters D = (p, h, n, Type, A, B, G), where the Type is “Montgomery 
curve,” and the other parameters are defined as follows: 
 
p:       2448−2224−1 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 
h:  4  
n:       1817096810739017226373309519720011335884103401718295150703725497951 
 46003961539585716195755291692375963310293709091662304773755859649779 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 
   54a7bb0d) 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 
 (=(p+1) − h⋅ n = 0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  
     721cf5b5 529eec34) 
A:       156326 
B:       1 
Gu:     5 
 (=0x5) 
Gv:     3552939267855681752641275020637833348089763993877142718318808984351\ 
 69088786967410002932673765864550910142774147268105838985595290606362 

 (=0x7d235d12 95f5b1f6 6c98ab6e 58326fce cbae5d34 f55545d0 60f75dc2  
     8df3f6ed b8027e23 46430d21 1312c4b1 50677af7 6fd7223d 457b5b1a) 
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Curve448 is isomorphic to W-448, specified in Section 3.2.1.7 (see Appendix B.2). In addition, 
Curve448 is birationally equivalent to E448. See Appendix B.1 for details. 

3.2.3. Twisted Edwards Curves 

Edwards curves offer high performance for elliptic curve calculations and protection against 
side-channel attacks. The Edwards Curve Digital Signature Algorithm (EdDSA) is a digital 
signature scheme based on twisted Edwards curves and is specified in FIPS 186-5. 

3.2.3.1. Edwards25519 

The elliptic curve Edwards25519 is the twisted Edwards curve Ea,d defined over the prime field 
GF(p) with p = 2255-19 and parameters a = −1 and d = −121665/121666 (i.e., 
37095705934669439343138083508754565189542113879843219016388785533085940283555) 
[RFC_8032]. This curve has order h⋅n, where h = 8, and n is a prime number. For this curve, a is 
a square in GF(p), whereas d is not. The quadratic twist of this curve has order h1⋅𝑛𝑛1, where h1 = 
4, and n1 is a prime number. This curve has domain parameters D = (p, h, n, Type, a, d, G), 
where the Type is “twisted Edwards curve,” and the other parameters are defined as follows: 

p:       2255−19 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
     ffffffed) 
h:  8  
n: 72370055773322622139731865630429942408\ 
 57116359379907606001950938285454250989 
      (=2252 + 0x14def9de a2f79cd6 5812631a 5cf5d3ed) 
tr:      −221938542218978828286815502327069187962 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 
a:       −1 
d:       −121665/121666 = 37095705934669439343138083508754565189\ 
             542113879843219016388785533085940283555 
 (=0x52036cee 2b6ffe73 8cc74079 7779e898 00700a4d 4141d8ab 75eb4dca 
     135978a3) 
Gx:     15112221349535400772501151409588531511\ 
 454012693041857206046113283949847762202 
 (=0x216936d3 cd6e53fe c0a4e231 fdd6dc5c 692cc760 9525a7b2 c9562d60 
      8f25d51a) 
Gy:      4/5 = 46316835694926478169428394003475163141\ 
      307993866256225615783033603165251855960 
 (=0x66666666 66666666 66666666 66666666 66666666 66666666 66666666 
       66666658) 

The curve Edwards25519 is birationally equivalent to the curve Curve25519 specified in Section 
3.2.2.1. See Appendix B.1 for more details. 
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3.2.3.2. Edwards448 

The elliptic curve Edwards448 is the Edwards curve Ea,d defined over the prime field GF(p) with 
p = 2448−2224−1 and parameters a = 1 and d = −39081 [RFC_8032]. This curve has order h⋅n, 
where h = 4, and n is a prime number. For this curve, a is a square in GF(p), whereas d is not. 
The quadratic twist of this curve has order h1⋅𝑛𝑛1, where h1 = 4, and n1 is a prime number. This 
curve has domain parameters D = (p, h, n, Type, a, d, G), where the Type is “twisted Edwards 
curve,” and the other parameters are defined as follows: 

p:       2448−2224−1 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 
h:  4  
n:       1817096810739017226373309519720011335884103401718295150703725497951 
 46003961539585716195755291692375963310293709091662304773755859649779 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 
   54a7bb0d) 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 
 (=(p+1) − h⋅ n = 0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  
     721cf5b5 529eec34) 
a:       1 
d:       −39081  
          = 7268387242956068905493238078880045343536413606873180602814901991806\ 
             12328166730772686396383698676545930088884461843637361053498018326358
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffff6756) 
Gx:     2245800402959243001876043340998960362467896416325641342461254616869\ 
          50415467406032909029192869357953282578032075146446173674602635247710
 (=0x4f1970c6 6bed0ded 221d15a6 22bf36da 9e146570 470f1767 ea6de324 
     a3d3a464 12ae1af7 2ab66511 433b80e1 8b00938e 2626a82b c70cc05e) 
Gy:     2988192100784814926760179304439306734375440401540802420959282413723\ 
          31506189835876003536878655418784733982303233503462500531545062832660          
      (=0x693f4671 6eb6bc24 88762037 56c9c762 4bea7373 6ca39840 87789c1e 
    05a0c2d7 3ad3ff1c e67c39c4 fdbd132c 4ed7c8ad 9808795b f230fa14) 

The curve Edwards448 is 4-isogenous to both the curves E448 and Curve448. See Appendix B.4 
for details. 

3.2.3.3. E448 

The elliptic curve E448 is the Edwards curve Ea,d defined over the prime field GF(p) with p = 
2448−2224−1 and parameters a = 1 and d = 39082/39081. This curve has order h⋅n, where h = 4, 
and n is a prime number. For this curve, a is a square in GF(p), whereas d is not. The quadratic 
twist of this curve has order h1⋅n1, where h1 = 4, and n1 is a prime number. This curve has domain 
parameters D = (p, h, n, Type, a, d, G), where the Type is a “twisted Edwards curve,” and the 
other parameters are defined as follows: 
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p:       2448−2224−1 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 
h:  4  
n:       1817096810739017226373309519720011335884103401718295150703725497951 
 46003961539585716195755291692375963310293709091662304773755859649779 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 
   54a7bb0d) 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 
 (=(p+1) − h⋅ n = 0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  
     721cf5b5 529eec34) 
a:       1 
d:       39082/39081 =  
 6119758507445291761604232209655533175432196968710166263289689364150\ 
 87860042636474891785599283666020414768678979989378147065462815545017 

 (=0xd78b4bdc 7f0daf19 f24f38c2 9373a2cc ad461572 42a50f37 809b1da3 
      412a12e7 9ccc9c81 264cfe9a d0809970 58fb61c4 243cc32d baa156b9) 

Gx:     3453974930397295163740086041505374102666552600751832902164069702816\ 
          45695073672344430481787759340633221708391583424041788924124567700732 

 (=0x79a70b2b 70400553 ae7c9df4 16c792c6 1128751a c9296924 0c25a07d   
     728bdc93 e21f7787 ed697224 9de732f3 8496cd11 69871309 3e9c04fc) 

Gy:     3/2 =  
          3634193621478034452746619039440022671768206803436590301407450995903\ 
          06164083365386343198191849338272965044442230921818680526749009182721 
       

 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  
     80000000 00000000 00000000 00000000 00000000 00000000 00000001) 

The curve E448 is birationally equivalent to Curve448, specified in Section 3.2.2.2. See 
Appendix B.1 for more details. The curve Edwards448 (specified in Section 3.2.3.2) is 4-
isogenous to the curve E448. See Appendix B.4 for further information. 

 Curves Over Binary Fields (Deprecated) 

This section specifies elliptic curves over binary fields where each curve takes the form of a 
curve in short-Weierstrass form and is either a Koblitz curve (Section 3.3.1) or a pseudorandom 
curve (Section 3.3.2). Due to their limited adoption, elliptic curves over binary fields (i.e., all of 
the curves specified in Section 3.3) are deprecated and may be removed from a subsequent 
revision to these guidelines to facilitate interoperability and simplify elliptic curve standards and 
implementations. New implementations should select an appropriate elliptic curve over a prime 
field from Section 3.2. 
Here, the domain parameters a and b for Koblitz curves are elements of the base field GF(2) (i.e., 
b = 1 and a = 0 or a = 1), whereas for pseudorandom curves, a = 1 and b is a non-zero element of 
GF(2m). 
For each field degree m, a pseudorandom curve is given along with a Koblitz curve. The 
pseudorandom curve has the form 
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E: y 2 + x y = x 3 + x 2 + b, 
and the Koblitz curve has the form 

Ea: y2 + x y = x 3 + ax 2 + 1, 
where a = 0 or 1. 
For each pseudorandom curve, the cofactor is h = 2. The cofactor of each Koblitz curve is h = 2 
if a = 1, and h = 4 if a = 0. 
The coefficients of the pseudorandom curves and the coordinates of the base points of both kinds 
of curves are given in terms of both the polynomial and normal basis representations discussed in 
Section 3.1.3. 
For each m, the following parameters are given: 
Field Representation: 

• The normal basis type T  
• The field polynomial (a trinomial or pentanomial) f(z) 

Koblitz Curve: 

• The coefficient a  
• The base point order n  
• The base point x coordinate Gx  
• The base point y coordinate Gy 

Pseudorandom curve: 

• The base point order n  

Pseudorandom curve (Polynomial Basis representation): 

• The coefficient b  
• The base point x coordinate Gx  
• The base point y coordinate Gy 

Pseudorandom curve (Normal Basis representation): 

• The 160-bit input Seed to the SHA-1 based algorithm (i.e., the domain parameter seed) 
• The coefficient b (i.e., the output of the SHA-1 based algorithm) 
• The base point x coordinate Gx 
• The base point y coordinate Gy 

Integers (such as T, m, and n) are given in decimal form. Bit strings and field elements are given 
in hexadecimal. 
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3.3.1. Koblitz Curves 

3.3.1.1. Curve K-163 

This curve is for legacy-use only. See FIPS 186-4 for the specification. 

3.3.1.2. Curve K-233 

The elliptic curve K-233 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 233 and parameters a = 0 and b = 1. This curve has order h⋅n, where h = 4, and n is a prime 
number. This curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where 
the Type is “Koblitz curve,” and the other parameters are defined as follows: 
T: 2 
f(z): z233 + z74 + 1 
h: 4 
n:  345087317339528189371737793113851276057094098886225212\ 

6328087024741343 
  (=0x80 00000000 00000000 00000000 00069d5b b915bcd4 6efb1ad5 f173abdf) 

tr:         −137381546011108235394987299651366779 
   (=(2m+1) − h⋅ n =   −0x1a756e e456f351 bbec6b57 c5ceaf7b) 
a:         0 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000000) 
b:   1 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000001) 

Polynomial basis: 
Gx:      0x172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126 
Gy:    0x1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b 56e0c110 56fae6a3 

Normal basis: 
Gx:      0x0fd e76d9dcd 26e643ac 26f1aa90 1aa12978 4b71fc07 22b2d056 14d650b3 
Gy:    0x064 3e317633 155c9e04 47ba8020 a3c43177 450ee036 d6335014 34cac978 

Seed:  n/a (binary Koblitz curve) 

3.3.1.3. Curve K-283 

The elliptic curve K-283 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 283 and parameters a = 0 and b = 1. This curve has order h⋅n, where h = 4, and n is a prime 
number. This curve has domain parameters D = (m,  f(z), T, h, n, Type, a, b, G, {Seed, c}), where 
the Type is “Koblitz curve,” and the other parameters are defined as follows: 
T: 6 
f(z): z283 + z12 + z7 + z5 + 1  
h: 4 
n: 388533778445145814183892381364703781328481\ 

1733793061324295874997529815829704422603873  
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(=0x1ffffff ffffffff ffffffff ffffffff ffffe9ae 2ed07577  
            265dff7f 94451e06 1e163c61) 

tr:         7777244870872830999287791970962823977569917  
   (=(2m+1) − h⋅ n = 0x5947 44be2a23 66880201 aeeb87e7 87a70e7d) 
a:         0 

(=0x0000000 00000000 00000000 00000000 00000000 00000000  
      00000000 00000000 00000000) 

b:   1 
(=0x0000000 00000000 00000000 00000000 00000000 00000000  

      00000000 00000000 00000001) 
Polynomial basis: 
Gx:       0x503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a  

            16876913 b0c2ac24 58492836 
Gy:   0x1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698  
             e4596236 4e341161 77dd2259 
Normal basis: 
Gx:       0x3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b db15024b  

                        212c7022 9de5fcd9 2eb0ea60 
Gy:     0x2118c47 55e7345c d8f603ef 93b98b10 6fe8854f feb9a3b3  

                       04634cc8 3a0e759f 0c2686b1 
Seed:  n/a (binary Koblitz curve) 

3.3.1.4. Curve K-409 

The elliptic curve K-409 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 409 and parameters a = 0 and b = 1. This curve has order h⋅n, where h = 4, and n is a prime 
number. This curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where 
the Type is “Koblitz curve,” and the other parameters are defined as follows: 
T: 4 
f(z): z409 + z87 + 1 
h: 4 
n: 3305279843951242994759576540163855199142023414821406096423243\ 

95022880711289249191050673258457777458014096366590617731358671 
(=  0x7fffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffe5f  

      83b2d4ea 20400ec4 557d5ed3 e3e7ca5b 4b5c83b8 e01e5fcf) 
tr:         10457288737315625927447685387048320737638796957687575791173829  
   (=(2m+1) − h⋅ n = 0x681 f134ac57 7effc4ee aa0a84b0 7060d692 d28df11c 
       7f8680c5) 
a:         0 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  
      00000000 00000000 00000000 00000000 00000000 00000000) 

b:   1 
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  

      00000000 00000000 00000000 00000000 00000000 00000001) 
Polynomial basis: 
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Gx:       0x060f05f 658f49c1 ad3ab189 0f718421 0efd0987 e307c84c 27accfb8 
            f9f67cc2 c460189e b5aaaa62 ee222eb1 b35540cf e9023746 

Gy:     0x1e36905 0b7c4e42 acba1dac bf04299c 3460782f 918ea427 e6325165 
      e9ea10e3 da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b 

Normal basis: 
Gx:       0x1b559c7 cba2422e 3affe133 43e808b5 5e012d72 6ca0b7e6 a63aeafb 
          c1e3a98e 10ca0fcf 98350c3b 7f89a975 4a8e1dc0 713cec4a  
Gy:     0x16d8c42 052f07e7 713e7490 eff318ba 1abd6fef 8a5433c8 94b24f5c 
         817aeb79 852496fb ee803a47 bc8a2038 78ebf1c4 99afd7d6  
Seed:  n/a (binary Koblitz curve) 

3.3.1.5. Curve K-571 

The elliptic curve K-571 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 571 and parameters a = 0 and b = 1. This curve has order h⋅n, where h = 4, and n is a prime 
number. This curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where 
the Type is “Koblitz curve,” and the other parameters are defined as follows: 
T: 10 
f(z): z571 + z10 + z5 + z2 + 1 
h: 4 
n: 193226876150862917234767594546599367214946366485321749932\ 

861762572575957114478021226813397852270671183470671280082\ 
5351461273674974066617311929682421617092503555733685276673  
(=0x 2000000 00000000 00000000 00000000 00000000 00000000 00000000 
            00000000 00000000 131850e1 f19a63e4 b391a8db 917f4138 
   b630d84b e5d63938 1e91deb4 5cfe778f 637c1001) 

 
tr:         −148380926981691413899619140297051490364542\ 
   574180493936232912339534208516828973111459843  
   (=(2m+1) − h⋅ n =       -0x4c614387 c6698f92 ce46a36e 45fd04e2 d8c3612f  
           9758e4e0 7a477ad1 73f9de3d 8df04003) 
a:         0 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  
      00000000 00000000 00000000 00000000 00000000 00000000) 
      00000000 00000000 00000000 00000000 00000000) 

b:   1 
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  

      00000000 00000000 00000000 00000000 00000000 00000000) 
      00000000 00000000 00000000 00000000 00000001) 

Polynomial basis: 
Gx:      0x26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4 60248048 

  01841ca4 43709584 93b205e6 47da304d b4ceb08c bbd1ba39  
  494776fb 988b4717 4dca88c7 e2945283 a01c8972 

Gy:    0x349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54 ffc61efc 
         006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a  

     7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3  
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Normal basis: 
Gx:     0x04bb2db a418d0db 107adae0 03427e5d 7cc139ac b465e593 4f0bea2a 
        b2f3622b c29b3d5b 9aa7a1fd fd5d8be6 6057c100 8e71e484 

     bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7  
Gy:   0x44cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bd124e 751ceff4 
        369dd8da c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49 
        ebaa98bd 2483e331 80e04286 feaa2530 50caff60  
Seed:  n/a (binary Koblitz curve) 

3.3.2. Pseudorandom Curves 

3.3.2.1. Curve B-163 

This curve is for legacy-use only. See FIPS 186-4 for the specification. 

3.3.2.2. Curve B-233 

The elliptic curve B-233 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 233 and parameter a = 1. This curve has order h⋅n, where h = 2, and n is a prime number. This 
curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where the Type is 
“Weierstrass curve,” and the other parameters are defined as follows: 
T: 2 
f(z): z233 + z74 + 1 
h: 2 
n:  690174634679056378743475586227702555583981273734501355\ 
  5379383634485463  
   (=0x100 00000000 00000000 00000000 0013e974 e72f8a69 22031d26 03cfe0d7) 
tr:         −206777407530349254000433718821372333  
   (=(2m+1) − h⋅ n =   −0x27d2e9 ce5f14d2 44063a4c 079fc1ad) 
a:         1 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000001) 

Polynomial basis: 
b:        0x066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad 
Gx:       0x0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b 
Gy:     0x100 6a08a419 03350678 e58528be bf8a0bef f867a7ca 36716f7e 01f81052 

Normal basis: 
b:      0x1a0 03e0962d 4f9a8e40 7c904a95 38163adb 82521260 0c7752ad 52233279 
Gx:       0x18b 863524b3 cdfefb94 f2784e0b 116faac5 4404bc91 62a363ba b84a14c5 
Gy:     0x049 25df77bd 8b8ff1a5 ff519417 822bfedf 2bbd7526 44292c98 c7af6e02 

Seed:      0x74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3 
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3.3.2.3. Curve B-283 

The elliptic curve B-283 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 283 and parameter a = 1. This curve has order h⋅n, where h = 2, and n is a prime number. This 
curve has domain parameters D = (m,  f(z), T, h, n, Type, a, b, G, {Seed, c}), where the Type is 
“Weierstrass curve,” and the other parameters are defined as follows: 
T: 6 
f(z): z283 + z12 + z7 + z5 + 1 
h: 2 
n: 7770675568902916283677847627294075626569625924376904889\  

109196526770044277787378692871  
(=0x3ffffff ffffffff ffffffff ffffffff ffffef90 399660fc  

938a9016 5b042a7c efadb307) 
tr:         2863663306391796106224371145726066910599667  
   (=(2m+1) − h⋅ n =   0x 20df8cd33e06d8eadfd349f7ab0620a499f3) 
a:         1 

(=0x0000000 00000000 00000000 00000000 00000000 00000000  
      00000000 00000000 00000001) 

Polynomial basis: 
b:       0x27b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2  

a581485a f6263e31 3b79a2f5 
Gx:       0x5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c  

80e2e198 f8cdbecd 0x86b12053 
Gy:   0x3676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0  

826779c8 13f0df45 be8112f4 
Normal basis: 
b:       0x157261b 894739fb 5a13503f 55f0b3f1 0c560116 66331022 
    01138cc1 80c0206b dafbc951 
Gx:       0x749468e 464ee468 634b21f7 f61cb700 701817e6 bc36a236  

4cb8906e 940948ea a463c35d 
Gy:     0x62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4 ccd0dc90  

5b70f624 46f49c05 2f49c08c 
Seed:    0x77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be 

3.3.2.4. Curve B-409 

The elliptic curve B-409 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 409 and parameter a = 1. This curve has order h⋅n, where h = 2, and n is a prime number. This 
curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where the Type is 
“Weierstrass curve,” and the other parameters are defined as follows: 
T: 4 
f(z): z409 + z87 + 1 
h: 2 
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n: 6610559687902485989519153080327710398284046829642812192846487\ 
98304157774827374805208143723762179110965979867288366567526771 
(=0x1000000 00000000 00000000 00000000 00000000 00000000 000001e2 
            aad6a612 f33307be 5fa47c3c 9e052f83 8164cd37 d9a21173) 

tr:         -6059503967182126918765909026644927652236777310526686418445029  
   (=(2m+1) − h⋅ n =                 -0x3c5 55ad4c25 e6660f7c bf48f879 3c0a5f07 
      02c99a6f b34422e5) 
a:         1 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  
      00000000 00000000 00000000 00000000 00000000 00000001) 

Polynomial basis: 
b:      0x021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99 
         d6ac27c8 a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f 
Gx:      0x15d4860 d088ddb3 496b0c60 64756260 441cde4a f1771d4d b01ffe5b 
               34e59703 dc255a86 8a118051 5603aeab 60794e54 bb7996a7 
Gy:    0x061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5 a7bd198d 0158aa4f 
              5488d08f 38514f1f df4b4f40 d2181b36 81c364ba 0273c706 
Normal basis: 
b:      0x124d065 1c3d3772 f7f5a1fe 6e715559 e2129bdf a04d52f7 b6ac7c53 
             2cf0ed06 f610072d 88ad2fdc c50c6fde 72843670 f8b3742a 
Gx:      0x0ceacbc 9f475767 d8e69f3b 5dfab398 13685262 bcacf22b 84c7b6dd 
        981899e7 318c96f0 761f77c6 02c016ce d7c548de 830d708f  
Gy:    0x199d64b a8f089c6 db0e0b61 e80bb959 34afd0ca f2e8be76 d1c5e9af 
             fc7476df 49142691 ad303902 88aa09bc c59c1573 aa3c009a 
Seed:   0x4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b 

3.3.2.5. Curve B-571 

The elliptic curve B-571 is a Weierstrass curve Ba,b defined over the binary field GF(2m) with m 
= 571 and parameter a = 1. This curve has order h⋅n, where h = 2, and n is a prime number. This 
curve has domain parameters D = (m, f(z), T, h, n, Type, a, b, G, {Seed, c}), where the Type is 
“Weierstrass curve,” and the other parameters are defined as follows: 
T: 10 
f(z): z571 + z10 + z5 + z2 + 1 
h: 2 
n: 386453752301725834469535189093198734429892732970643499865\ 

723525145151914228956042453614399938941577308313388112192\ 
6944486246872462816813070234528288303332411393191105285703 
(=0x3fffff ffffffff ffffffff fffffffff ffffffff ffffffff ffffffff 
        ffffffff ffffffff e661ce18 ff559873 08059b18 6823851e 
       c7dd9ca1 161de93d 5174d66e 8382e9bb 2fe84e47) 

 
tr:       9953438501360975865946981915046538223641239\ 
 6452349171016760770327496674607579419075443 
 (=(2m+1) − h⋅ n =             0x333c63ce 0154cf19 eff4c9cf 2fb8f5c2 7044c6bd 
         d3c42d85 5d165322 f8fa2c89 a02f6373) 
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a:         1 
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  
     00000000 00000000 00000000 00000000 00000000 00000000 
        00000000 00000000 00000000 00000000 00000001) 

Polynomial basis: 
b:     0x2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce 
        4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a 
        78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a 
Gx:     0x303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8 

db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003 
8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19  

Gy:   0x37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853 
        3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 
        0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b 
Normal basis: 
b:     0x3762d0d 47116006 179da356 88eeaccf 591a5cde a7500011 8d9608c5 
          9132d434 26101a1d fb377411 5f586623 f75f0000 1ce61198  

     3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777   
Gx:     0x0735e03 5def5925 cc33173e b2a8ce77 67522b46 6d278b65 0a291612 
        7dfea9d2 d361089f 0a7a0247 a184e1c7 0d417866 e0fe0feb 
        0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8 
Gy:   0x04a3642 0572616c df7e606f ccadaecf c3b76dab 0eb1248d d03fbdfc 
         9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a 24628048 
        b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97 
Seed:  0x2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310 
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Appendix A. Details of Elliptic Curve Group Operations 

A.1. Non-binary Curves 

A.1.1. Group Law for Weierstrass Curves 

For each point P on the Weierstrass curve Wa,b, the point at infinity ∅ serves as the identity 
element (i.e., P + ∅ = ∅ + P = P). 

For each point P = (x, y) on the Weierstrass curve Wa,b, the point −P is the point (x, −y), and one 
has P + (−P) = ∅. 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the Weierstrass curve Wa,b, where P1 ≠ ± P2, and let 
Q = P1 + P2. Then Q = (x, y), where 

𝑥𝑥 = 𝜆𝜆2 − 𝑥𝑥1 − 𝑥𝑥2 and  𝑦𝑦 =  λ(𝑥𝑥1 − 𝑥𝑥) − 𝑦𝑦1, where λ =  (𝑦𝑦2 −  𝑦𝑦1)/(𝑥𝑥2 − 𝑥𝑥1 ).  

Let P = (x1, y1) be a point on the Weierstrass curve Wa,b, where P ≠ − P, and let Q = 2P. Then Q = 
(x, y), where 

𝑥𝑥 =  λ2 − 2𝑥𝑥1 and  𝑦𝑦 =  λ(𝑥𝑥1 − 𝑥𝑥) − 𝑦𝑦1, where λ = (3 x12 +  𝑎𝑎)/2𝑦𝑦1.  

A.1.2. Group Law for Montgomery Curves 

For each point P on the Montgomery curve MA,B, the point at infinity ∅ serves as the identity 
element (i.e., P + ∅ = ∅ + P = P). 

For each point P = (u, v) on the Montgomery curve MA,B, the point −P is the point (u, −v), and 
one has P + (−P) = ∅. 

Let P1 = (u1, v1) and P2 = (u2, v2) be points on the Montgomery curve MA,B, where P1 ≠ ± P2, and 
let Q = P1 + P2. Then Q = (u, v), where 

𝑢𝑢 = 𝐵𝐵 λ2 − 𝐴𝐴 − 𝑢𝑢1 − 𝑢𝑢2 and  𝑣𝑣 =  λ(𝑢𝑢1 − 𝑢𝑢) − 𝑣𝑣1, where λ = (𝑣𝑣2 −  𝑣𝑣1)/(𝑢𝑢2 − 𝑢𝑢1 ).  

Let P = (u1, v1) be a point on the Montgomery curve MA,B, where P ≠ − P, and let Q = 2P. Then Q 
= (u, v), where 

𝑢𝑢 = 𝐵𝐵 λ2 − 𝐴𝐴 − 2𝑢𝑢1 and 𝑣𝑣 =  λ(𝑢𝑢1 − 𝑢𝑢) − 𝑣𝑣1, where λ = (3 𝑢𝑢12 +  2𝐴𝐴𝑢𝑢1 + 1)/2𝐵𝐵𝑣𝑣1.  

A.1.3. Group Law for Twisted Edwards Curves 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the twisted Edwards curve Ea,d, and let Q = P1 + P2. 
Then Q  = (x, y), where 

  
(𝑥𝑥,𝑦𝑦) = �

𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1
1 + 𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2 ,

𝑦𝑦1𝑦𝑦2 − 𝑎𝑎𝑥𝑥1𝑥𝑥2
1 − 𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2

�. 

For the twisted Edwards curves specified in this Recommendation, the domain parameter a is 
always a square in GF(q), whereas d is not. In this case, the addition formula above is defined for 
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each pair of points. In particular, for each point P = (x1, y1) on the twisted Edwards curve Ea,d, 
point doubling yields the point Q = 2P, where Q = (x, y)  and 

(𝑥𝑥,𝑦𝑦) = �
2𝑥𝑥1𝑦𝑦1 

1 + 𝑑𝑑𝑥𝑥12𝑦𝑦12
 ,
𝑦𝑦12 −  𝑎𝑎 𝑥𝑥12

1 − 𝑑𝑑𝑥𝑥12𝑦𝑦12
�. 

Note that (0, 1) is the identity element since for each point P = (x, y) on the twisted Edwards 
curve Ea,d, one has P + (0, 1)  = (x, y) + (0, 1) = (x, y) = P.  
For each point P = (x, y) on the twisted Edwards curve EA,B, the inverse point −P is the point (-x, 
y), and one has P + (−P) = (0, 1). The point (0, −1) has order 2. 

A.2. Binary Curves 

A.2.1. Group Law for Weierstrass Curves 

For each point P on the Weierstrass curve Ba,b, the point at infinity ∅ serves as the identity 
element (i.e., P + ∅ = ∅ + P = P). 
For each point P = (x, y) on the Weierstrass curve Ba,b, the point −P is the point (x, x + y), and 
one has P + (−P) = ∅. 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the Weierstrass curve Ba,b, where P1 ≠ ± P2, and let 
Q = P1 + P2. Then, Q = (x, y), where 

𝑥𝑥 =  λ2 + λ + 𝑎𝑎 − 𝑥𝑥1 − 𝑥𝑥2 and 𝑦𝑦 =  λ(𝑥𝑥1 + 𝑥𝑥) − 𝑥𝑥 − 𝑦𝑦1, where λ =  (𝑦𝑦2 + 𝑦𝑦1)/(𝑥𝑥2 + 𝑥𝑥1 ).  

Let P = (x1, y1) be a point on the Weierstrass curve Ba,b, where P ≠ − P, and let Q = 2P. Then, Q = 
(x, y), where 

𝑥𝑥 =  λ2 + λ + 𝑎𝑎 = 𝑥𝑥12 +
𝑏𝑏
𝑥𝑥12

and 𝑦𝑦 =  λ(𝑥𝑥1 + 𝑥𝑥) − 𝑥𝑥 − 𝑦𝑦1, where λ = 𝑥𝑥1 + 𝑦𝑦1/𝑥𝑥1. 
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Appendix B. Relationships Between Curve Models 

The non-binary curves specified in this Recommendation are expressed in different curve models 
defined over the same field GF(q) – namely as curves in short-Weierstrass form, as Montgomery 
curves, or as twisted Edwards curves. These curve models are related as follows. 

B.1. Mapping Between Twisted Edwards Curves and Montgomery Curves 

One can map points on the Montgomery curve MA,B to points on the twisted Edwards curve Ea,d , 
where a = (A+2)/B and d = (A-2)/B and, conversely, map points on the twisted Edwards curve 
Ea,d to points on the Montgomery curve MA,B, where A = 2(a+d)/(a-d) and B = 4/(a-d). Here, it is 
assumed that 𝑎𝑎 ≠ 0,𝑑𝑑 ≠ 0,𝐴𝐴 ≠ −2,2, and 𝐵𝐵 ≠ 0. For the curves in this specification, this 
defines a birational equivalence between MA,B and Ea,d, thereby showing that the discrete 
logarithm problem in either curve model is equally hard.  
For the Montgomery curves and twisted Edwards curves in this specification, the mapping from 
MA,B to Ea,d is defined by mapping the point at infinity ∅ and the point (0, 0) of order two on 
MA,B to the point (0, 1) and the point (0, −1) , respectively, of order two on Ea,d, while mapping 
every other point (u, v) on MA,B to the point (x, y) = (u/v, (u−1)/(u+1)) on Ea,d. The inverse 
mapping from Ea,d to MA,B is defined by mapping the point (0, 1) and the point (0, −1) of order 
two on Ea,d to the point at infinity ∅ and the point (0, 0), respectively, of order two on MA,B, 
while every other point (x, y) on Ea,d is mapped to the point (u, v) = ((1+y)/(1−y), (1+y)/(1−y)x) 
on MA,B. 
Specifically, for the curves defined in Section 3, the following is true:  
Using the above maps, the base point of Curve25519 corresponds to the base point of 
Edwards25519. For points (u, v) ≠ ∅, (0,0) on Curve25519, the image under the mapping 
corresponds to the point (α u/v, (u − 1)/(u + 1)) on Edwards25519. Here α is the element of 
GF(p) defined by:  

α:      51042569399160536130206135233146329284\ 
          152202253034631822681833788666877215207 
 (=0x70d9120b 9f5ff944 2d84f723 fc03b081 3a5e2c2e b482e57d 3391fb55 
      00ba81e7). 

The inverse mapping from Edwards25519 to Curve25519 maps points (x,y) (other than the points 
(0, 1) and (0, −1)) to ((1 + y)/(1 − y), α(1 + y)/(1−y)x).  
Similarly, the base point of Curve448 corresponds to the base point of E448. Every other point 
(u, v) ≠ ∅ , (0,0) on Curve448 corresponds to the point (α u/v, (u + 1)/(u − 1)) on E448, where α 
is the element of GF(p) defined by:  

α:      1978884672954644395383540097538580382568351525910598021481997791960\ 
          87404232002515713604263127793030747855424464185691766453844835192428 
 (=0x45b2c5f7 d649eed0 77ed1ae4 5f44d541 43e34f71 4b71aa96 c945af01  
     2d182975 0734cde9 faddbda4 c066f7ed 54419ca5 2c85de1e 8aae4e6c) 

For points that are not the point at infinity ∅ and the point (0,0) of order two, the inverse 
mapping from E448 to Curve448 sends (x, y) to the point ((y + 1)/(y − 1), α(y + 1)/(y−1)x). 
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Implementations may take advantage of these mappings to carry out elliptic curve group 
operations that were originally defined for a twisted Edwards curve on the corresponding 
Montgomery curve, or vice-versa, and translating the result back to the original curve to 
potentially allow code reuse. 

B.2. Mapping Between Montgomery Curves and Weierstrass Curves 

One can map points on the Montgomery curve MA,B to points on the Weierstrass curve Wa,b , 
where a = (3−A2)/3B2 and b = (2A3−9A)/27B3. For the curves in this specification, this defines a 
one-to-one correspondence, which is an isomorphism between MA,B and Wa,b, thereby showing 
that the discrete logarithm problem in either curve model is equally hard.  
For the Montgomery curves in this specification, the mapping from MA,B to Wa,b is defined by 
mapping the point at infinity ∅ on MA,B to the point at infinity ∅ on Wa,b, while mapping every 
other point (u, v) on MA,B to the point (x, y) = (u/B+A/3B, v/B) on Wa,b.  
Note that not all Weierstrass curves can be mapped to Montgomery curves since the latter have a 
point of order two and the former may not. In particular, if a Weierstrass curve has prime order – 
as with the curves P-224, P-256, P-384, and P-521 specified in this Recommendation – this 
mapping is not defined. 
This mapping can be used to implement elliptic curve group operations that were originally 
defined for a twisted Edwards curve or for a Montgomery curve using group operations on the 
corresponding elliptic curve in short-Weierstrass form and translating the result back to the 
original curve to potentially allow for code reuse. 
Note that implementations for elliptic curves with short-Weierstrass form that hard-code the 
domain parameter a to a = −3 cannot always be used this way since the curve Wa,b may not 
always be expressed in terms of a Weierstrass curve with a = −3 via a coordinate transformation. 
This is, unfortunately, the case with the Montgomery curves and twisted Edwards curves 
specified in this Recommendation. 
Specifically, for the curves in Section 3, the following is true: 
The curve W-25519 is isomorphic to Curve25519, where the base point of Curve25519 
corresponds to the base point of W-25519, the point at infinity ∅ of Curve25519 corresponds to 
the point at infinity ∅ on W-25519, and the point (u, v) on Curve25519 corresponds to the point 
(x, y) = (u+A/3, v) on Wa,b. Note that Curve25519 is not isomorphic with a Weierstrass curve 
with domain parameter a = −3, although it is isogenous to such a Weierstrass curve (see 
[IETF_draft_Struik]).  
The curve W-448 is isomorphic to Curve448, where the base point of Curve448 corresponds to 
the base point of W-448, the point at infinity ∅ of Curve448 corresponds to the point at infinity 
∅ on W-448, and the point (u, v) on Curve448 corresponds to the point (x, y) = (u+A/3, v) on 
Wa,b. Note that Curve448 is not isomorphic with a Weierstrass curve with domain parameter a = 
−3. In particular, this means that one cannot reuse an implementation for curves with short-
Weierstrass form that hardcodes the domain parameter a to −3 to implement Curve448. 
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B.3. Mapping Between Twisted Edwards Curves and Weierstrass Curves 

A straightforward method to map points on a twisted Edwards curve to points on a Weierstrass 
curve is to convert the curve to Montgomery format first. Use the mapping described in 
Appendix B.1 to map points on a twisted Edwards curve to points on a Montgomery curve. Then 
use the mapping described in Appendix B.2 to convert points on the Montgomery curve to points 
on a Weierstrass curve. 

B.4. 4-Isogenous Mapping 

The 4-isogeny map between the Montgomery curve Curve448 and the Edwards curve 
Edwards448 is given in [RFC_7748] to be 

     (u, v) = (𝑦𝑦2

𝑥𝑥2, (2 − 𝑥𝑥2 − 𝑦𝑦2)𝑦𝑦
𝑥𝑥3 ) 

(𝑥𝑥,𝑦𝑦) = �
4𝑣𝑣(𝑢𝑢2 − 1)

𝑢𝑢4 − 2𝑢𝑢2 + 4𝑣𝑣2 + 1
,
−(𝑢𝑢5 − 2𝑢𝑢3 − 4𝑢𝑢𝑣𝑣2 + 𝑢𝑢)

(𝑢𝑢5 − 2𝑢𝑢2𝑣𝑣2 − 2𝑢𝑢3𝑣𝑣2 + 𝑢𝑢)
�. 

The curve Edwards448 (Section 3.2.3.2) is 4-isogenous to the curve E448 (Section 3.2.3.3), 
where the base point of Edwards448 corresponds to the base point of E448 and where the 
identity element (0, 1) and the point (0, −1) of order two of Edwards448 correspond to the 
identity element (0, 1) on E448. Every other point (x, y) on Edwards448 corresponds to the point 
on E448, where α is the element of GF(p) defined in Section 3.2.2.2: 

(𝑥𝑥′, 𝑦𝑦′) = � α𝑥𝑥𝑥𝑥
1−𝑑𝑑 𝑥𝑥2𝑥𝑥2

, 1+𝑑𝑑 𝑥𝑥2𝑥𝑥2

𝑥𝑥2− 𝑥𝑥2
�. 
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Appendix C. Generation Details for Recommended Elliptic Curves 

C.1. General Cryptographic Criteria 

All curves recommended in this specification satisfy the following general cryptographic criteria: 
1. Underlying finite field. The underlying finite field GF(q) shall be either a prime field or q 

= 2m, where m is a prime number. 

2. Curve order. Each curve E defined over the finite field GF(q) shall have order |E| = h⋅n, 
where n is a large prime number, h is co-prime with n, and h is small (h is called the 
cofactor of E). Each curve shall have cofactor h ≤ 210. 

3. Base point. Each curve E shall have a fixed base point G of prime order n. 
4. Avoiding anomalous curve attack. Each curve E defined over the finite field GF(q) shall 

have order |E| ≠ q so as to avoid attacks using additive transfers. 
5. Large embedding degree. The elliptic curve discrete logarithm problem in E can be 

converted to an ordinary discrete logarithm problem defined over the finite field GF(qk), 
where k is the smallest positive integer so that qk ≡ 1 mod n, called the embedding degree. 
Each curve shall have embedding degrees k ≥ 210. All of the elliptic curves specified in 
this document have much larger embedding degrees that are close to the order n (which is 
typical for elliptic curves). 

6. Endomorphism field. For each curve E over GF(q) with trace t, the (negative) number 
Disc = t2 − 4q is closely related to the discriminant of the endomorphism field of E. As of 
the publication of this document, there is no technical rationale for imposing a large 
lower bound on the square-free part of |Disc|, although this value is often large except for 
curves used in pairing-based cryptography. This Recommendation does not impose 
restrictions on the value of the square-free part of |Disc|. 

C.1.1. Implementation Security Criteria 

Each field shall have a fixed representation. 

C.2. Curve Generation Details 

C.2.1. Weierstrass Curves Over Prime Fields 

C.2.1.1. Curves P-224, P-256, P-384, P-521 

Each of the curves P-224 (Section 3.2.1.2), P-256 (Section 3.2.1.3), P-384 (Section 3.2.1.4), and 
P-521 (Section 3.2.1.5) is a curve Wa,b in short-Weierstrass form with prime order (and, thus, 
cofactor h = 1). Each curve is defined over a prime field GF(p) where the prime number is of a 
special form to allow efficient modular reduction (see Appendix G.1). 
The NIST prime curves were generated using the procedure in Appendix C.3.1 with hdigest = 
160 and SHA-1 hash function.  
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1. The parameter a was set to a ≡ −3 mod p, which allows for optimizations of the group 
law if implemented via projective coordinates in Weierstrass form. 

2. The parameter b was derived in a hard-to-invert way using the procedure in Appendix 
C.3.1 from a pseudorandom Seed value so that the following conditions were satisfied 
simultaneously: 

a. 4a3 + 27b2 ≠ 0 in GF(p); 
b. The curve has prime order n, which implies that h = 1; and 
c. The curve satisfies the cryptographic criteria in Appendix C.1. 

3. Select a base point G = (Gx, Gy) of order n. 

C.2.1.2. Curves W-25519 and W-448 

The curves W-25519 (Section 3.2.1.6) and W-448 (Section 3.2.1.7) were obtained from 
Curve25519 and Curve448 via an isomorphic mapping (see Appendix B.1). 

C.2.2. Montgomery Curves 

C.2.2.1. Curve25519 

Curve25519 was specified in IETF 7748 by the Crypto Forum Research Group (CFRG). This 
curve is a Montgomery curve MA,B defined over the field GF(p), where p = 2255−19, the curve 
has cofactor h = 8, and the quadratic twist E1 has cofactor h1 = 4. The prime number is of a 
special form to allow efficient modular reduction and finite field operations that try and 
minimize carry effects of operands. The curve parameters A and B are: 

1. The parameter B was set to B = 1. 
2. The parameter A was selected as the minimum value of |A| so that the following 

conditions were satisfied simultaneously: 
a. The group is cyclic, which implies that A2−4 is not a square in GF(p); 
b. The curve has cofactor h = 8, which implies that A+2 is a square in GF(p); 
c. The quadratic twist has cofactor h1 = 4; 

d. A has the form A ≡ 2 mod 4, which allows optimized implementations of the 
group law using the Montgomery ladder; and 

e. The curve and the quadratic twist both satisfy the cryptographic criteria in 
Appendix C.1. 

3. Select the base point G = (Gx, Gy) of order n, where |Gx| is minimal, and Gy is even.  

C.2.2.2. Curve448 

This curve is a Montgomery curve MA,B defined over the field GF(p), where p = 2448−2224−1, the 
curve has cofactor h = 4, and the quadratic twist E1 has cofactor h1 = 4. The prime number is of a 
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special form to allow efficient modular reduction and finite field operations that try to minimize 
the carry effects of operands. The curve parameters A and B are: 

1. The parameter B was set to B = 1. 
2. The parameter A was selected as the minimum value of |A| so that the following 

conditions were satisfied simultaneously: 
a. The group is cyclic, which implies that A2−4 is not a square in GF(p); 
b. The curve has cofactor h = 4, which implies that A+2 is not a square in GF(p); 
c. The quadratic twist has cofactor h1= 4; 

d. A has the form A ≡ 2 mod 4, which allows optimized implementations of the 
group law using the Montgomery ladder; and 

e. The curve and the quadratic twist both satisfy the cryptographic criteria in 
Appendix C.1. 

3. Select the base point G = (Gx, Gy) of order n, where |Gx| is minimal, and Gy is even. 

C.2.3. Twisted Edwards Curves 

The twisted Edwards curve Edwards25519 (Section 3.2.3.1) was obtained from the Montgomery 
curve Curve25519 (Section 3.2.2.1) via a birational equivalence.   
The Edwards curve E448 (Section 3.2.3.3) was obtained from the Montgomery curve Curve448 
(Section 3.2.2.2) via a birational equivalence.  
The Edwards curve Edwards448 (Section 3.2.3.2) was obtained from the curve E448 (Section 
3.2.3.3) via a 4-isogenous mapping (see Appendix B.4). 

C.2.4. Weierstrass Curves over Binary Fields 

C.2.4.1. Koblitz Curves K-233, K-283, K-409, and K-571 

Each of the curves K-233 (Section 3.3.1.2), K-283 (Section 3.3.1.3), K-409 (Section 3.3.1.4), 
and K-571 (Section 3.3.1.5) is a curve Ba,b in short-Weierstrass form with cofactor h = 2 or h = 4. 
Each curve is defined over a binary field GF(2m), where m is a prime number. For Koblitz 
curves, the curve parameters a and b are elements of GF(2) with b = 1. Hence, for each 
parameter m, there are only two Koblitz curves with a = 0 and a = 1. Koblitz curves with a = 0 
have order 0 modulo 4, while those with a = 1 have order 2 modulo 4. 
The curve parameters a and m were chosen to satisfy the following: 

1. The parameter a was set to a = 0. 
2. The set of integers m in the interval [160,600] was determined so that the following 

conditions were satisfied simultaneously: 
a. m is a prime number; 
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b. The curve has cofactor h = 4, or the quadratic twist of this curve has cofactor h = 
2 (the latter implies that the Koblitz curve defined over the binary field GF(2m) 
with a = 1 has cofactor h = 2); and 

c. The determined curve satisfies the cryptographic criteria in Appendix C.1. 
3. Select a pair (a, m) from the set determined above. 
4. Select an irreducible polynomial f(z) of degree m, where f(z) is selected of a special form 

so as to allow efficient modular reduction (f(z) is a trinomial or pentanomial). 
5. Select a base point G = (Gx, Gy) of order n. 

C.2.4.2. Pseudorandom Curves B-233, B-283, B-409, and B-571 

Each of the curves B-233 (Section 3.3.2.2), B-283 (Section 3.3.2.3), B-409 (Section 3.3.2.4), and 
B-571 (Section 3.3.2.5) is a curve Ba,b in short-Weierstrass form with cofactor h = 2. Each curve 
is defined over a binary field GF(2m), where m is a prime number, and the prime number is 
among those values for which a binary Koblitz curve exists. The NIST prime curves were 
generated using the procedure in Appendix C.3.3,with hdigest = 160 and SHA-1 hash function. 
The curve parameters a and b are: 

1. The parameter a was set to a = 1 (this ensures that curves with cofactor h = 2 may exist). 
2. The parameter b was derived in a hard-to-invert way using the procedure in Appendix 

C.3.3 from a pseudorandom Seed value so that the following conditions were satisfied 
simultaneously: 

a. b ≠ 0 in GF(p); 
b. The curve has cofactor h = 2; and 
c. The curve satisfies the cryptographic criteria in Appendix C.1. 

3. Select a base point G = (Gx, Gy) of order n. 

C.3. Generation and Verification of Pseudorandom Curves 

C.3.1. Generation of Pseudorandom Curves (Prime Case) 

When generating the NIST pseudorandom curves (i.e, those in Section 3.2.1), hdigest = 160 and 
SHA-1 hash were used. 
Inputs:  

1. Positive integer l 
2. Bit-string s of length hdigest 
3. Approved hash function HASH with output length of hdigest bits and security design 

strength of at least requested_security_strength. 
 
Output: Coefficient b used to generate a pseudorandom prime curve 
 



NIST SP 800-186  Discrete Logarithm-based Cryptography: 
February 2023   Elliptic Curve Domain Parameters 

39 

Process: 
 
Let l be the bit length of p, and define  

v  =  ( l – 1) /hdigest 
w  = l – hdigest × v – 1 

1.  Choose an arbitrary hdigest-bit string s as the domain parameter Seed. 
2.  Compute H = HASH(s). 
3.  Let H0 be the bit string obtained by taking the w rightmost bits of H.  
4.  Let z be the integer whose binary expansion is given by the hdigest-bit string s.  
5.  For i from 1 to v:  

5.1  Define the hdigest-bit string si to be the binary expansion of the integer  
       (z + i) mod (2 hdigest).  
5.2  Compute hi = HASH(si). 

6.  Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv. 
7. Let c be the integer whose binary expansion is given by the bit string h.  
8. If ((c = 0) or (4c + 27 ≡ 0 mod p)), then go to Step 1.  
9. Choose integers a, b ∈GF(p), such that  

c b2 ≡ a3 mod p. 

(The simplest choice is a = c and b = c. However, they may be chosen differently for 
performance reasons. For example, the pseudorandom prime curves in this document all 
have a = -3.)  

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has suitable order. If 
not, go to Step 1.  

C.3.2. Verification of Curve Generation (Prime Case) 

Given the hdigest domain parameter seed value s, verify that the coefficient b was obtained from 
s via the cryptographic hash function HASH as follows: 
Inputs:  

1. Positive integer l  
2. The coefficient b 
3. Bit-string s of length hdigest 
4. Approved hash function HASH with output length of hdigest bits and security design 

strength of at least requested_security_strength 
 
Output: Verification that the coefficient b was obtained from s via the cryptographic hash 
function HASH 
Process:  
 
Let l be the bit length of p, and define  
  v  =  ( l – 1) /hdigest  
  w  = l – hdigest ×v – 1 
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1.  Compute h = HASH(s). 
2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.  
3.  Let z be the integer whose binary expansion is given by the hdigest-bit string s.  
4.  For i = 1 to v do 

4.1  Define the hdigest-bit string si to be the binary expansion of the integer  
    (z + i) mod (2hdigest ).  
4.2  Compute hi = HASH(si). 

5.  Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv 
6. Let c be the integer whose binary expansion is given by the bit string h.  
7. Verify that b2 c ≡ –27 mod p. 

C.3.3. Generation of Pseudorandom Curves (Binary Case) 

Inputs: 
1. Prime number m 
2. Bit-string s of length hdigest 
3. Approved hash function HASH with output length of hdigest bits and security design 

strength of at least requested_security_strength 
 
Output: Coefficient b used to generate a pseudorandom binary curve 
 
Process: 
Let  

v =  (m – 1) / hdigest  
w = m – hdigest × v 

1.  Choose an arbitrary hdigest-bit string s as the domain parameter seed. 
2.  Compute h = HASH(s). 
3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.  
4.  Let z be the integer whose binary expansion is given by the hdigest-bit string s.  
5. For i from 1 to v, do:  

5.1  Define the hdigest-bit string si to be the binary expansion of the integer  
(z + i) mod (2hdigest )  

5.2  Compute hi  = HASH(si).  
6.   Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv 
7.   Let b be the element of GF(2m), which is represented by the bit string h in the Gaussian 

Normal Basis (see Appendix G.3.1). 
8. Choose an element a of GF(2m). 
9.   Check that the elliptic curve E over GF(2m) given by y2 + xy =  x3 + ax2 + b has suitable 

order. If not, go to Step 1. 
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C.3.4. Verification of Curve Generation (Binary Case) 

Given the hdigest-bit domain parameter seed value s, verify that the coefficient b was obtained 
from s via the cryptographic hash function HASH as follows: 
Inputs: 

1. Prime number m 
2. The coefficient b (using the normal basis representation) 
3. Bit-string s of length hdigest 
4. Approved hash function HASH with output length of hdigest bits and security design 

strength of at least requested_security_strength 
 
Output: Verification that the coefficient b was obtained from s via the cryptographic hash 
function HASH 
 
Process: 
Define 

v =  (m – 1) / hdigest  
w= m – hdigest v 

1. Compute h = HASH(s). 
2. Let h0 be the bit string obtained by taking the w rightmost bits of h.  
3. Let z be the integer whose binary expansion is given by the hdigest-bit string s.  
4. For i = 1 to v, do: 

4.1  Define the hdigest-bit string si to be binary expansion of the integer (z + i) mod 
(2160). 

4.2  Compute hi = HASH(si ). 
5. For i = 1 to v, do: 

h = h0  || h1 || … || hv. 
6. Let c be the element of GF(2m ), which is represented by the bit string h in the Gaussian 

Normal Basis (see Section G.3.1). 
7. Verify that c = b. 
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Appendix D. Elliptic Curve Routines 

D.1. Public Key Validation 

D.1.1. Non-binary Curves in Short-Weierstrass Form 

D.1.1.1. Partial Public Key Validation 

Inputs: 
1. Weierstrass curve Wa,b defined over the prime field GF(p) 
2. Point Q 

Output: ACCEPT or REJECT Q as an affine point on Wa,b. 
Process: 

1. If Q is the point at infinity ∅, output REJECT. 
2. Let Q = (x, y). Verify that x and y are integers in the interval [0, p−1]. Output REJECT if 

verification fails. 
3. Verify that (x, y) is a point on Wa,b by checking that (x, y) satisfies the defining equation 

y2 = x3 + a x + b, where computations are carried out in GF(p). Output REJECT if 
verification fails. 

4. Otherwise, output ACCEPT. 

D.1.1.2. Full Public Key Validation 

Inputs: 
1. Weierstrass curve Wa,b defined over the prime field GF(p) 
2. Point Q 

Output: ACCEPT or REJECT Q as a point on Wa,b of order n. 

Process: 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.1.1. 
Output REJECT if this procedure outputs REJECT. 

2. Verify that n Q = ∅. Output REJECT if verification fails. 
3. Otherwise, output ACCEPT. 

D.1.2. Montgomery Curves 

D.1.2.1. Partial Public Key Validation 

Inputs: 
1. Montgomery curve MA,B defined over the prime field GF(p) 
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2. Point Q 

Output: ACCEPT or REJECT Q as an affine point on MA,B. 

Process: 

1. If Q is the point at infinity ∅, output REJECT.  
2. Let Q = (u, v). Verify that both u and v are integers in the interval [0, p−1]. Output 

REJECT if verification fails. 
3. Verify that (u, v) is a point on MA,B by checking that (u, v) satisfies the defining equation 

Bv2 = u (u2 + A u + 1), where computations are carried out in GF(p). Output REJECT if 
verification fails. 

4. Otherwise, output ACCEPT. 

D.1.2.2. Full Public Key Validation 

Inputs: 
1. Montgomery curve MA,B defined over the prime field GF(p) 
2. Point Q 

Output: ACCEPT or REJECT Q as a point on MA,B of order n. 

Process: 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.2.1. 
Output REJECT if this procedure outputs REJECT. 

2. Verify that n Q = ∅. Output REJECT if verification fails. 
3. Otherwise, output ACCEPT. 

D.1.3. Twisted Edwards Curves 

D.1.3.1. Partial Public Key Validation 

Inputs: 
1. Edwards curve Ea,d defined over the prime field GF(p) 
2. Point Q 

Output: ACCEPT or REJECT Q as an affine point on Ea,d. 

Process: 

1. Verify that both x and y are integers in the interval [0, p−1]. Output REJECT if 
verification fails. 

2. Let Q = (x, y). Verify that (x, y) is a point on Ea,d by checking that (x, y) satisfies the 
defining equation a x2 + y2 = 1+ d x2 y2, where computations are carried out in GF(p). 
Output REJECT if verification fails. 
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3. Otherwise, output ACCEPT. 

D.1.3.2. Full Public Key Validation 

Inputs: 
1. Edwards curve Ea,d defined over the prime field GF(p) 
2. Point Q 

Output: ACCEPT or REJECT Q as a point on Ea,d of order n. 

Process: 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.3.1. 
Output REJECT if this procedure outputs REJECT. 

2. If Q = (0,1), output REJECT.  
3. Verify that n Q = (0,1). Output REJECT if verification fails. 
4. Otherwise, output ACCEPT. 

D.1.4. Binary Curves in Short-Weierstrass Form 

D.1.4.1. Partial Public Key Validation 

Inputs: 
1. Weierstrass curve Ba,b defined over the binary field GF(2m) 
2. Point Q 

Output: ACCEPT or REJECT Q as an affine point on Ba,b. 

Process: 

1. If Q is the point at infinity ∅, output REJECT. 
2. Let Q = (x, y). Verify that both x and y are binary polynomials in GF(2m) according to the 

field representation indicated by the parameter FR. Output REJECT if verification fails. 
3. Verify that (x, y) is a point on the Ba,b by checking that (x, y) satisfies the defining 

equation y2 + x y = x3 + a x2 + b, where computations are carried out in GF(2m) according 
to the field representation indicated by the parameter FR. Output REJECT if verification 
fails. 

4. Otherwise, output ACCEPT. 

D.1.4.2. Full Public Key Validation 

Inputs: 
1. Weierstrass curve Ba,b defined over the binary field GF(2m) 
2. Point Q 
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Output: ACCEPT or REJECT Q as a point on Ba,b of order n. 

Process: 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.4.1. 
Output REJECT if this procedure outputs REJECT. 

2. Verify that n Q = ∅. Output REJECT if verification fails. 
3. Otherwise, output ACCEPT. 

D.2. Point Compression 

Point compression allows for a shorter representation of elliptic curve points in affine 
coordinates by exploiting algebraic relationships between the coordinate values based on the 
defining equation of the curve in question. Point compression followed by its inverse “point 
decompression” is the identity map. 

D.2.1. Prime Curves in Short-Weierstrass Form 

Point compression for non-binary curves in short-Weierstrass form is defined as follows: 
Inputs: 

1. Weierstrass curve Wa,b defined over the prime field GF(p) 
2. Point P on Wa,b 

Output: Compressed point P 

Process: 

1. If P is the point at infinity ∅, set P = P. 
2. If P = (x, y), set P = (x, y), where y = y mod 2. 
3. Output P. 

Point decompression of an object P with respect to this Weierstrass curve is defined as follows: 

Inputs: 

1. Object P 
2. Weierstrass curve Wa,b defined over the prime field GF(p) 

Output: Point P on Wa,b or INVALID 

Process: 

1. If P is the point at infinity ∅, output P = P. 
2. If P is the ordered pair (x, t), where x is an element of GF(p), and t is an element of {0, 

1}: 
2.1  Compute w = x3 + a x + b. 
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2.2 Compute a square root y of w in GF(p) using the procedure of Appendix E.3. Output 
INVALID if that procedure outputs INVALID. 

2.3 If y = 0 and t = 1, output INVALID. 
2.4 If t ≠ y mod 2, set y = p−y. 
2.5 Output P = (x, y). 

3. Output INVALID. 

D.2.2. Binary Curves in Short-Weierstrass Form 

Point compression for binary curves in short-Weierstrass form is defined as follows: 
Inputs: 

1. Weierstrass curve Ba,b defined over the binary field GF(2m) 
2. Point P on Ba,b 

Output: Compressed point P 

Process: 

1. If P is the point at infinity ∅, set P = P. 
2. If P = (x, y) and x=0, set P = (x, y), where y = 0. 
3. If P = (x, y) and x ≠ 0: 

3.1 Compute 𝑎𝑎 = y/x, where 𝑎𝑎 = 𝑎𝑎0 +  𝑎𝑎1𝑧𝑧 + ⋯+ 𝑎𝑎𝑚𝑚−1𝑧𝑧𝑚𝑚−1. 
3.2 Set P = (x, y), where y = 𝑎𝑎0. 

4. Output P. 

Consequently, for each affine point P = (x, y) on the Weierstrass curve Ba,b, the compressed 
point P is an ordered pair (x, t), where x is an element of GF(2m), and t is an element of GF(2). 
Point decompression of an object P with respect to this Weierstrass curve is defined as follows: 
Inputs: 

1. Object P 
2. Weierstrass curve Ba,b defined over the binary field GF(2m), where m is an odd integer 

Output: Point P on Ba,b or INVALID 

Process: 

1. If P is the point at infinity ∅, output P = P. 
2. If P is the ordered pair (x, t), where x is an element of GF(2m) and t is an element of 

GF(2), perform the following: 
2.1 If x = 0, perform the following steps: 

2.1.1 If t = 1, output INVALID. 
2.1.2 Set y to the square root of b in GF(2m) using the algorithm of Appendix E.1. 

2.2 If x ≠ 0, perform the following steps: 
2.2.1 Compute w = (x3 + a x2 + b)/x2 = x + a + b/x2. 
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2.2.2 Compute a solution α in GF(2m) of the equation α2 + α = w using the 
algorithm of Appendix E.2. Output INVALID if that procedure outputs 
INVALID. 

2.2.3 If t ≠ 𝑎𝑎0, where 𝑎𝑎 = 𝑎𝑎0 + 𝑎𝑎1𝑧𝑧 + ⋯+ 𝑎𝑎𝑚𝑚−1𝑧𝑧𝑚𝑚−1, set α = α + 1. 
2.2.4 Set y = α x. 

2.3 Output P = (x, y). 
3. Output INVALID. 
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Appendix E. Auxiliary Functions 

E.1. Computing Square Roots in Binary Fields 

If x is an element of GF(2m), then its square root is the element 𝑥𝑥2𝑚𝑚−1 . 

E.2. Solving the Equation x2 + x = w in Binary Fields 

Input: Field element w in GF(2m), where m is an odd integer 

Output: Solution α in GF(2m) of the equation α2 + α = w or INVALID 
Process: 

1. Compute Tr(𝑤𝑤) = 𝑤𝑤20 + 𝑤𝑤21 +  𝑤𝑤22 +  𝑤𝑤23 +  … + 𝑤𝑤2𝑚𝑚−1 (the trace of w). 
2. If Tr(w) = 1, output INVALID. 
3. Compute α: = Hf(𝑥𝑥) = 𝑤𝑤20 + 𝑤𝑤22 + 𝑤𝑤24 +  … + 𝑤𝑤2𝑚𝑚−1 (the half-trace of w). 
4. Output α. 

E.3. Computing Square Roots in Non-Binary Fields GF(q) 

The Tonelli-Shanks algorithm can be used to compute a square root given an equation of the 
form x2 ≡ n mod p, where n is an integer – which is a quadratic residue mod p – and p is an odd 
prime.  
Find q and s (with q odd), such that p –1 = q2s by factoring out the powers of 2. 

Note that if s = 1, as for primes p ≡ 3 mod 4, this reduces to finding x = n(p+1)/4 mod p. 
Check to see if nq = 1. If so, then the root x = n(q+1)/2 mod p. 

Otherwise, select a z, which is a quadratic non-residue modulo p. The Legendre symbol �𝑎𝑎
𝑝𝑝
�, 

where p is an odd prime and a is an integer, can be used to test candidate values for z to see if a 
value of –1 is returned. 
Search for a solution as follows: 

1. Set x = n(q+1)/2 mod p.   
2. Set t = nq mod p.   
3. Set m = s.  
4. Set c = zq mod p.  
5. While t ≠ 1, repeat the following steps: 

a) Using repeated squaring, find the smallest i, such that  𝑡𝑡2𝑖𝑖 = 1, where 0 < i < m. 
For example: 

Let e = 2.  
Loop for i = 1 until i = m. 
If te mod p = 1, then exit the loop.   
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Set e = 2e. 
b) Update values: 

𝑏𝑏 = 𝑐𝑐2𝑚𝑚−𝑖𝑖−1(mod 𝑝𝑝) 
𝑥𝑥 = 𝑥𝑥𝑏𝑏(mod 𝑝𝑝) 
𝑡𝑡 = 𝑡𝑡𝑏𝑏2(mod 𝑝𝑝) 
𝑐𝑐 = 𝑏𝑏2(mod 𝑝𝑝) 
𝑚𝑚 = 𝑖𝑖 

The solution is x, and the second solution is p – x. If the least i found is m, then no solution 
exists.  
Square roots in a non-binary field GF(q) are relatively efficient to compute if q has the special 
form q ≡ 3 mod 4 or q ≡ 5 mod 8. All but one of the elliptic curves recommended in this 
Recommendation are defined over such fields. The following routines describe simplified cases 
to compute square roots for p ≡ 3 mod 4 or p ≡ 5 mod 8. 

To find a square root of (u/v) if p ≡ 3 mod 4 (as in E448), first compute the candidate root x = 
(u/v) (p+1)/4 = u3 v (u5v3) (p-3)/4 mod p. If v x2 = u, the square root is x. Otherwise, no square root 
exists. 

To find a square root of (u/v) if p ≡ 5 mod 8 (as in Edwards25519), first compute the 
candidate root x = (u/v) (p+3)/8 = u v3 (u v7) (p-5)/8 mod p. To find the root, check three cases: 

1. If v x2 = u mod p, the square root is x. 
2. If v x2 = –u mod p, the square root is x × 2((p-1)/4). 
3. Otherwise, no square root exists for modulo p. 

If x = 0 and x0 = 1, point decoding fails. If x mod 2 = x0, then the x-coordinate is x.  
Otherwise, the x-coordinate is p – x. 

E.4. Computing Inverses in GF(q) 

If x is an element of GF(q) and x ≠ 0, its (multiplicative) inverse is the element xq−2.  

If one is concerned about side-channel leakage, one should compute the inverse using a 
constant-time algorithm. For example, one could indirectly compute u−1 by first computing the 
inverse of the blinded element λu, where λ is a random non-zero element of GF(q), and 
subsequently computing λ(λu)−1 = u−1. This yields an inversion routine where the inversion 
operation itself does not require side-channel protection and which may have relatively low 
computational complexity. Note that there may be other more efficient constant-time inversion 
algorithms. 
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Appendix F. Data Conversion 

F.1. Conversion of a Field Element to an Integer 

The following algorithm is used to convert a field element to an integer. The algorithm is given 
for reference purposes. Other algorithms that produce an equivalent result may be used. 
Input: An element a of the field GF(q) 

Output: A non-negative integer x in the interval [0, q−1] 
Process: 

1. If q is an odd prime, a is an integer in the interval [0, q−1]. In this case, set x = a. 
2. If q = 2m, a must be a binary polynomial of a degree smaller than m,  

a = a(z) = am−1 zm−1 + am−2 zm−2 + … + a1 z + a0, where each coefficient ai is 0 or 1. 
In this case, set x = a(2) = am−1 2m−1 + am−2 2m−2 + … + a1 21 + a0 20 computed over ℤ, not 
modulo 2. 

3. Output x. 

F.2. Conversion of an Integer to a Field Element 

The following algorithm is used to convert an integer to a field element. The algorithm is given 
for reference purposes. Other algorithms that produce an equivalent result may be used. 
Inputs: Non-negative integer x and q, where q is an odd prime or q = 2m 

Output: An element a of the field GF(q) 
Process: 

1. Set x = x mod q. 
2. If q is an odd prime, x is an integer in the interval [0, q−1]. In this case, set a = x. 
3. If q = 2m, x can be uniquely written as x = am−1 2m−1 + am−2 2m−2 + … + a1 2 + x0, where 

each coefficient xi is 0 or 1. In this case, set x = a(z) = am−1 zm−1 + am−2 zm−2 + … + a1 z1 + 
a0 20; 

4. Output a. 

F.3. Conversion of an Integer to a Bit String 

The following algorithm is used to convert an integer to a bit string. The algorithm is given for 
reference purposes. Other algorithms that produce an equivalent result may be used. 
Inputs: Non-negative integer x in the range 0 ≤ x < 2l 

Output: Bit-string X of length l 
Process: 

1. The integer x can be uniquely written as x = xl−1 2l−1 + xl−2 2l−2 + … + x1 2 + x0, where 
each coefficient xi is 0 or 1. 

2. Set X to the bit string (xl−1, xl-2, …, x1, x0). 
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3. Output X. 

F.4. Conversion of a Bit String to an Integer 

The following algorithm is used to convert a bit string to an integer. The algorithm is given for 
reference purposes. Other algorithms that produce an equivalent result may be used. 
Input: Bit-string X of length l 
Output: Non-negative integer x, where x<2l 

Process: 
1. Let X be the bit string (xl−1, xl−2, …, x1, x0), where each coefficient xi is 0 or 1. 
2. Set x to the integer value x = xl−1 2l−1 + xl−2 2l−2 + … + x1 2 + x0. 
3. Output x. 
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Appendix G. Implementation Aspects 

G.1. Implementation of Modular Arithmetic 

The prime moduli of the above recommended curves are of a special type (generalized Mersenne 
numbers and Crandall primes) for which modular multiplication can be carried out more 
efficiently than in general. This section provides the rules for implementing faster arithmetic for 
each of these recommended prime moduli.  
The usual way to multiply two integers mod m is to take the integer product and reduce it 
modulo m. One, therefore, has the following problem: given an integer A less than m2, compute 

B = A mod m. 
In general, one must obtain B as the remainder of an integer division. If m is a generalized 
Mersenne number or a Crandall prime, however, then B can be expressed as a sum or difference 
mod m of a small number of terms. To compute this expression, the integer sum or difference 
can be evaluated and the result reduced modulo m. The latter reduction can be accomplished by 
adding or subtracting a few copies of m.  
The prime modulus p for each of the four recommended P-x curves is a generalized Mersenne 
number. 

G.1.1. Curve P-224 

The modulus for this curve is 𝑝𝑝 = 2224 − 296 + 1. Each integer A less than p2 can be written as 

,22222
22222222

0
32

1
64

2
96

3
128

4
160

5

192
6

224
7

256
8

288
9

320
10

352
11

384
12

416
13

AAAAAA
AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=  

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by 

A = ( A13 || A12 || … || A0 ). 
The expression for B is 

B = (T + S 1 + S 2 – D1 – D2) mod p, 
where the 224-bit terms are given by 

T  = ( A6 || A5 || A4 || A3 || A2 || A1 || A0 ) 
S1 = ( A10 || A9 || A8 || A7 || 0 || 0 || 0 ) 
S2 = ( 0 || A13 || A12 || A11 || 0 || 0 || 0 ) 
D1 = ( A13  || A12 || A11 || A10 || A9 || A8 || A7 ) 
D2 = ( 0 || 0 || 0 || 0 || A13 || A12 || A11 ). 

G.1.2. Curve P-256 

The modulus for this curve is p = 2256 – 2224 + 2192 + 296  – 1. Each integer A less than p2 can be 
written as 
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,2222222
22222222

0
32

1
64

2
96

3
128

4
160

5
192

6
224

7

256
8

288
9

320
10

352
11

384
12

416
13

448
14

480
15

AAAAAAAA
AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=  

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by  

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0 ). 
The expression for B is 

B = (T + 2S1 + 2S2 + S3 + S4 – D1 – D2 – D3 – D4) mod p, 
where the 256-bit terms are given by 

T  =  ( A7  || A6   ||  A5  || A4 || A3 || A2 || A1 || A0 ) 
S1 = ( A15 || A14 || A13 || A12 || A11 || 0 || 0 || 0 ) 
S2 = ( 0 || A15 || A14 || A13 || A12 || 0 || 0 || 0 ) 
S3 = (  A15 || A14 || 0 || 0 || 0 || A10 || A9  ||  A8  ) 
S4 = (  A8 || A13 || A15 || A14 || A13 || A11 || A10 || A9 ) 
D1 = ( A10  ||  A8 || 0 || 0 || 0 || A13 || A12 || A11 ) 
D2 = ( A11 || A9 || 0 || 0 || A15 || A14 || A13 || A12 ) 
D3 = ( A12 || 0 || A10 || A9 || A8 || A15 || A14 || A13 ) 
D4 = ( A13 || 0 || A11 || A10 || A9 || 0 || A15 || A14 ). 

G.1.3. Curve P-384 

The modulus for this curve is p = 2 384 – 2 128 – 2 96 + 2 32  – 1. Each integer A less than p2 can be 
written as 

,2222222
22222222

22222222

0
32

1
64

2
96

3
128

4
160

5
192

6
224

7

256
8

288
9

320
10

352
11

384
12

416
13

448
14

480
15

512
16

544
17

576
18

608
19

640
20

672
21

704
22

736
23

AAAAAAAA
AAAAAAAA

AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

 

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by  

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0). 
The expression for B is 

B = (T + 2S1 + S2 + S3 + S4 + S5 + S6 – D1 – D2 – D3) mod p, 
where the 384-bit terms are given by 

T  = (A11 || A10  || A9 || A8 || A7 || A6 || A5 || A4 || A3 || A2 || A1  ||  A0 ) 
S1 = ( 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || 0 || 0 ) 
S2 = (A23 || A22  || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12) 
S3 = (A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A23|| A22|| A21) 
S4 = ( A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A20 || 0 || A23 || 0 ) 

S5 = ( 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 || 0 || 0 || 0 ) 
S6 = ( 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || A20 ) 
D1 = (A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A23 ) 
D2 = ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 ) 
D3 = ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A23 || 0 || 0 || 0 ). 
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G.1.4. Curve P-521 

The modulus for this curve is p = 2 521 – 1. Each integer A less than p2 can be written as 

A = A1 ⋅ 2521 + A0, 
where each A i is a 521-bit integer. As a concatenation of 521-bit words, this can be denoted by  

A = (A1 || A0). 
The expression for B is 

B = (A0 + A1) mod p. 

G.1.5. Curve25519 

The modulus for this curve is p = 2255– 19. Each integer A less than p2 can be written 

A = A9⋅ 2230  +A8 ⋅ 2204 + A7 ⋅ 2179 + A6 ⋅ 2153 + A5 ⋅ 2128 + A4 ⋅ 2102 + A3 ⋅ 277 + A2 ⋅ 251 +A1 ⋅ 226 + A0, 
where each Ai is a 64-bit integer. As a concatenation of 64-bit words, this can be denoted by  

A = (A9 || A8 || A7 || A6 || A5 || A4 || A3 || A2 || A1 || A0). 
For more details on efficient implementation, see [NEON]. 

G.1.6. Curve448 

The modulus for this curve is p = 2448−2224 – 1. Each integer A less than p2 can be written 

A = A3 ⋅ 2672 + A2 ⋅ 2448 + A1 ⋅ 2224 + A0, 
where each A i is a 224-bit integer. As a concatenation of 224-bit words, this can be denoted by 

A = (A3 || A2 || A1 || A0). 
The expression for B is 

B = (S1 + S2 + S3 + S4) mod p, 
where the 448-bit terms are given by  

S1 = ( A1 || A0) 
S2 = ( A2 || A2) 
S3 = ( A3 || A3) 
S4 = ( A3 || 0). 

G.2. Scalar Multiplication for Koblitz Curves 

This section describes a particularly efficient method of computing the scalar multiple Q:= kP on 
the Koblitz curve Wa,b over GF(2m).  

The operation τ  is defined by 

τ (x, y) := (x2, y2). 
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When the normal basis representation is used, then the operation τ  is implemented by 
performing right circular shifts on the bit strings representing x and y.  
Given m and a, define the following parameters: 

• C is some integer greater than 5. 

• µ = (–1)1–a 

• For i = 0 and i = 1, define the sequence si(m) by 
si(0) := 0, si(1) := 1 – i, 

si(m) = µ⋅ si(m – 1) – 2 ⋅ si(m – 2) + (–1)i. 

• Define the sequence V(m) by 

V(0) := 2, V(1) := µ, 

V(m) = µ ⋅ V(m –1) – 2 ⋅ V(m – 2). 
For the recommended Koblitz curves, the quantities si(m) and V(m) are as follows: 
Curve K-163: 

s0(163) =  2579386439110731650419537 
s1(163) =  –755360064476226375461594 
V(163) =  –4845466632539410776804317 

Curve K-233: 
s0(233) =  –27859711741434429761757834964435883 
s1(233) =  –44192136247082304936052160908934886 
V(233) =  –137381546011108235394987299651366779 

Curve K-283: 
s0(283) =  –665981532109049041108795536001591469280025 
s1(283) =  1155860054909136775192281072591609913945968 
V(283) =  7777244870872830999287791970962823977569917 

Curve K-409: 
s0(409) =  –18307510456002382137810317198756461378590542487556869338419259 
s1(409) =  –8893048526138304097196653241844212679626566100996606444816790 
V(409)= 10457288737315625927447685387048320737638796957687575791173829 

Curve K-571: 
s0(571) =  –3737319446876463692429385892476115567147293964596131024123406420\ 

235241916729983261305 
s1(571) =  –3191857706446416099583814595948959674131968912148564658610565117\ 

58982848515832612248752 
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V(571)=  –1483809269816914138996191402970514903645425741804939362329123395\ 
34208516828973111459843 

The following algorithm computes the scalar multiple Q:= kP on the Koblitz curve Wa,b over 
GF(2m). The average number of elliptic additions and subtractions is at most ∼ 1 + (m/3) and is at 
most ∼ m/3 with probability at least 1 – 25–C. 

1. For i := 0 to 1, do: 
1.1 k′ ←   k / 2a–C + (m–9) / 2 
1.2 g′ ← si(m) · k′ 
1.3 h′ ←   g′ / 2m  
1.4 j′ ← V(m) · h′ 
1.5 l′ ← Round((g′ + j′) / 2(m+5) / 2) 
1.6 λi ← l′ / 2C 
1.7 fi ← Round(λi) 
1.8 ηi ← λi – fi. 

1.9 hi ← 0 
2. η ← 2 η0 +  µ η1 

3. If (η ≥ 1), 

      then 
if (ηo – 3 µη1 < –1) 

then set h1 ← µ. 
Else, set h0 ← 1. 

  Else, 
   if (η0 + 4 µ η1 ≥ 2), 

   then set h1 ← µ. 

4. If (η < –1), 
         then 

if (η0 – 3 µ η1 ≥  1), 
then set h1 ← – µ. 
Else, set h0 ← –1. 

  Else, 
   if (η0 + 4 µ η1 <  –2), 

  then set h1 ← – µ. 

5. q0  ← f0  + h0  
6. q1  ← f1  + h1  
7. r0 ← n – (s0  + µ s1) q0 – 2s1 q1 
8. r1 ← s1 q0 – s0 q1 
9. Set Q ← O 
10. P0 ← P 
11. While ((r0 ≠ 0) or (r1 ≠ 0)) 

11.1 If (r0  odd), then 
11.1.1 Set u ← 2 – (r0  – 2 r1 mod 4). 
11.1.2 Set r0 ← r0  – u. 
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11.1.3 If (u = 1), then set Q ← Q + P0. 
11.1.4 If (u = –1), then set Q ← Q – P0. 

11.2 Set P0 ← τP0. 
11.3 Set (r0 , r1) ← (r1 + µr0 /2, – r0 /2). 

Endwhile 
12. Output Q. 

G.3. Polynomial and Normal Bases for Binary Fields 

G.3.1. Normal Bases 

The elements of GF(2m), where m is odd, are expressed in terms of the type T normal2 basis B for 
GF(2m) for some T. Each element has a unique representation as a bit string: 

(a0 a1 …  am–1). 

The arithmetic operations are performed as follows: 
Addition: Addition of two elements is implemented by bit-wise addition modulo 2. Thus, for 
example, 

(1100111) + (1010010) = (0110101). 
Squaring: If 

α  = (a0 a1  …  am–2 am–1), 
then 

α2 = (am–1 a0 a1 …  am–2). 
Multiplication: Multiplication depends on the following function F(u,v) on inputs: 

u = (u0 u1 …  um–1)  and  v = (v0 v1 …  vm–1), 
which is constructed as follows. 

1. Set p = Tm + 1. 
2. Let u be an integer having order T modulo p. 
3. Compute the sequence F (1), F (2), … , F (p–1) as follows: 

a.  Set w = 1. 
b. For j from 0 to T–1, do: 

i. Set n = w. 
ii. For i = 0 to m–1, do: 

1. Set F(n) = i. 
2. Set  n = 2n mod p. 

iii. Set w = uw mod  p. 
4. Output the formulae F(u, v), where 

 
2 It is assumed in this section that m is odd and T is even since this is the only case considered in this standard. 
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This computation only needs to be performed once per basis. 
Given the function F for B, the product 

(c0 c1 …  cm–1) = (a0 a1 …  am–1) × (b0 b1 …  bm–1) 

is computed as follows: 

1. Set (u0 u1 …  um–1) = (a0 a1 . . .  am–1). 
2. Set (v0 v1 …  vm–1) = (b0 b1 . . .  bm–1 ). 
3. For k = 0 to m – 1, do: 

a.  Compute ck = F(u, v). 
b. Set u = LeftShift (u) and v := LeftShift (v), where LeftShift denotes the circular 
  left shift operation. 

4. Output c = (c0 c1 …  cm–1). 

Example:  
For the type-4 normal basis for GF(27), one has p = 29 and u = 12 or u = 17. Thus, the values of 
F are given by: 

F (1) = 0  F (8) = 3  F (15) = 6  F (22) = 5  
F (2) = 1  F (9) = 3 F (16) = 4 F (23) = 6  
F (3) = 5  F (10) = 2  F (17) = 0  F (24) = 1  
F (4) = 2  F (11) = 4  F (18) = 4  F (25) = 2  
F (5) = 1  F (12) = 0  F (19) = 2  F (26) = 5  
F (6) = 6  F (13) = 4  F (20) = 3  F (27) = 1  
F (7) = 5 F (14) = 6  F (21) = 3  F (28) = 0  

Therefore, 
F (u, v) = u0 v1 + u1 (v0 + v2 + v5 + v6) + u2 (v1 + v3 + v4 + v5) + u3 (v2 + v5) + 

 u4 (v2 + v6) + u5 (v1 + v2 + v3 + v6) + u6 (v1 + v4 + v5 + v6). 
As a result, if 

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1), 
then 

c0 = F ((1 0 1 0 1 1 1), (1 1 0 0 0 0 1)) = 1, 
c1 = F ((0 1 0 1 1 1 1), (1 0 0 0 0 1 1)) = 0, 

⋮ 
c6 = F ((1 1 0 1 0 1 1), (1 1 1 0 0 0 0)) = 1, 

so that c = a × b = (1 0 1 1 0 0 1). 
For the binary curves recommended in this specification, the values of T are T = 2 (m = 233), T = 
6 (m = 283), T = 4 (m = 409), and T = 10 (m = 571), respectively. 
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G.3.2. Polynomial Basis to Normal Basis Conversion 

Let α be an element of the field GF(2m) with bit-string representation p with respect to a given 
polynomial basis and bit-string representation n with respect to a given normal basis. The bit 
strings p and n are related via 

p Γ = n, 

where Γ is an (m × m) matrix with entries in GF(2). The matrix Γ, which only depends on the 
bases, can be easily computed given its second-to-last row. For each conversion, that second-to-
last row is given below. 
Degree 233: 
     0x0be 19b89595 28bbc490 038f4bc4 da8bdfc1 ca36bb05 853fd0ed 0ae200ce  

Degree 283:  
0x3347f17 521fdabc 62ec1551 acf156fb 0bceb855 f174d4c1 7807511c 9f745382 

 add53bc3  

Degree 409:   
0x0eb00f2 ea95fd6c 64024e7f 0b68b81f 5ff8a467 acc2b4c3 b9372843 6265c7ff 

  a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5  

Degree 571:  
0x7940ffa ef996513 4d59dcbf e5bf239b e4fe4b41 05959c5d 4d942ffd 46ea35f3 

  e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43 c55091b6 1174d7c0 8d0cdd61 

  3bf6748a bad972a4  

If r is the second-to-last row of Γ and represents the element β of GF(2m) with respect to the 
normal basis, then the rows of Γ from top to bottom are the bit-string representations of the 
elements 

β m–1, β m–2, …, β 2, β, 1 

with respect to this normal basis. (Note that the element 1 is represented by the all-1 bit string.) 
Alternatively, the matrix is the inverse of the matrix described in Appendix G.3.3. 
More details of these computations can be found in Annex A.7 of the IEEE Standard 1363-2000 
standard [IEEE_1363]. 

G.3.3. Normal Basis to Polynomial Basis Conversion 

Let α be an element of the field GF(2m) with bit-string representation n with respect to a given 
normal basis and bit-string representation p with respect to a given polynomial basis. The bit 
strings p and n are related via 

n ∆ = p, 
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where ∆ is an (m × m) matrix with entries in GF(2). The matrix ∆, which depends only on the 
bases, can be easily computed given its top row. For each conversion, that top row is given 
below. 
Degree 233:  
            0x149 9e398ac5 d79e3685 59b35ca4 9bb7305d a6c0390b cf9e2300 253203c9  

 Degree 283:   
   0x31e0ed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bc1d792e ba9867fc 

  7b317a99  

Degree 409:   
 0x0dfa06b e206aa97 b7a41fff b9b0c55f 8f048062 fbe8381b 4248adf9 2912ccc8 

  e3f91a24 e1cfb395 0532b988 971c2304 2e85708d  

Degree 571:  
 0x452186b bf5840a0 bcf8c9f0 2a54efa0 4e813b43 c3d41496 06c4d27b 487bf107 

  393c8907 f79d9778 beb35ee8 7467d328 8274caeb da6ce05a eb4ca5cf 3c3044bd 

  4372232f 2c1a27c4 

If r is the top row of ∆ and represents the element β of GF(2 m), then the rows of ∆, from top to 
bottom, are the bit strings representing the elements 

β, β 2, β 22, … , β 2m–1 
with respect to the polynomial basis. Alternatively, the matrix is the inverse of the matrix 
described in Appendix G.3.2. 
More details of these computations can be found in Annex A.7 of the IEEE Std 1363-2000 
standard. 
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Appendix H. Other Allowed Elliptic Curves 

H.1. Brainpool Curves 

This standard also allows the curves specified in Elliptic Curve Cryptography (ECC) Brainpool 
Standard Curves and Curve Generation [RFC_5639] for ECDSA signatures as well as EC key 
establishment, which support a security strength of 112 bits or higher. In particular, this includes 
brainpoolP224r1, brainpoolP256r1, brainpoolP320r1, brainpoolP384r1, and brainpoolP512r1. 
These curves were pseudorandomly generated and are allowed to be used for interoperability 
reasons. 

H.2. The Curve secp256k1 

This standard also allows the curve secp256k1 specified in SEC 2: Recommended Elliptic Curve 
Domain Parameters [SEC_2], which supports a security strength of 128 bits. This curve is a 
Koblitz curve with coefficients selected for efficiency reasons. The curve secp256k1 is allowed 
to be used for blockchain-related applications. 
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Appendix I. List of Symbols, Abbreviations, and Acronyms 

Selected acronyms and abbreviations used in this publication are defined below. 

a mod n 
Smallest non-negative integer r so that a − r is a multiple of n 

a 
The floor of a; the largest integer that is less than or equal to a. For example, 5 = 5,  5.3 = 5, and -2.1 = -3 

Ba,b 
Elliptic curve in short-Weierstrass form defined over the binary field GF(2m) with domain parameters a and b 

c 
Parameter used in domain parameter generation for some curves Wa,b in short-Weierstrass form, where  c = a2/b3 
(optional) 

D 
Domain parameters of elliptic curve 

Ea,d 
Twisted Edwards curve with domain parameters a and d 

G 
Base point of order n of an elliptic curve 

GF(q) 
Finite field of size q 

GF(p) 
Prime field of size p, represented by the set of integers {0,1, …, p−1} 

h 
Cofactor of an elliptic curve 

Hf 
Half-trace function (for binary fields) 

len(a) 
The length of a in bits; the integer L, where 2L-1 ≤ a < 2L 

MA,B 
Montgomery curve, with domain parameters A and B 

n 
Order of a prime-order subgroup of elliptic curve 

p 
Prime number 

Seed 
String from which part of the domain parameters are derived (optional) 

t 
Trace of an elliptic curve 

Tr 
Trace function (for binary fields) 
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Type 
Indication of elliptic curve type 

(u, v) 
Coordinates on a Montgomery curve 

Wa,b 
Elliptic curve in short-Weierstrass form with domain parameters a and b 

(x, y) 
Coordinates on a (twisted) Edwards or Weierstrass curve 

(x’, y’) 
Coordinates on an Edwards448 curve that correspond to the x,y coordinates on an E448 curve 

0x 
Indication of a hexadecimal string 

∅ 
Identity element of an elliptic curve 

\ 
Indication that an integer value stretches over several lines 
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Appendix J. Glossary 
base point 
A fixed elliptic curve point that generates the group used for elliptic curve cryptography. 

group order 
Cardinality of the group. 

identity  
Unique group element 0 for which x + 0 = x for each group element x, relative to the binary group operator +. 

inverse 
For some group element x, the unique element y for which x + y is the identity element relative to the binary group 
operator + (y is usually denoted as −x). 

isogeny 
A (non-constant) mapping from an elliptic curve to a second elliptic curve, which preserves point addition and fixes 
the identity point. 

isomorphism (of elliptic curves) 
A bijective mapping from one elliptic curve to another, which maps addition (on the first curve) to addition (on the 
image curve). 

point at infinity 
Identity element of a Montgomery curve or a curve in short-Weierstrass form. 

point order 
Smallest non-zero multiple of a group element that results in the group’s identity element. 

quadratic twist 
Certain elliptic curve related to a specified elliptic curve. 

square 
The property that some element x of a finite field GF(q) can be written as x = z2 for some element z in the same field 
GF(q). 
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